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Introduction

Classical and quantum mechanical systems are mathematically described in a different way. For finitely
many degrees of freedom, differential geometry, notably symplectic and Poisson geometry, provides
the language in which classical mechanical systems are described, whereas functional analysis and in
particular the theory of Hilbert spaces is the appropriate language in which quantum mechanics is
formulated. The mathematics is well understood in both situations, and one even has a powerful tool
for the passage from the classical to the quantum mechanical description of a corresponding system,
namely quantization theory.

In their book (Mathematical Concepts of Quantum Mechanics, Gustafson & Sigal, [2011), the authors
depict the situation by the following diagram, where d — oo denotes the passage from finitely to
infinitely many degrees of freedom.

quantization

™M QM

| s

CFT ——— QFT

quantization

The key ingrediants for the description of a physical system are the mathematical objects which
encode its state space, the observable space, and its dynamics. These objects should depend in some
functorial on the system and usually come from quite distinct categories, depending on whether the
system is classical or quantum, has finitely or infinitely many degrees of freedom.
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Classical Field Theory



.1. Variational calculus

1.1. The variational bicomplex

The Cartan distribution

1.1.1 We start with a smooth fiber bundle 7 : E — M over a d-dimensional manifold M. The typical
fiber is denoted F' and assumed to have dimension n. Consider the infinite jet bundle 7y : J°E — M
and recall that (J®E, C®) is the pro-manifold defined as the limit of the (cofiltered) diagram

(B,e*) &L (Jip,ev) &2 TEL (R, ew) e (1.1.1)

in the category of commutative locally R-ringed spaces. This means that in the category of topological

spaces J®E coincides with hnR}JkE and that the structure sheaf G, is given by cohm WkOOGﬁE

where the 7y o : J°FE — J¥E are the natural maps from the (topological) limit to the objects of the
diagram. The projection 7y, : J* E — M is uniquely determined by the property that 7y, = T, 07y o
for all k € N, where 7, is the canonical projections of the finite jet bundles J¥E. Note that the family
of canonical projections 7, : J*E — M is compatible with the diagram Equation ({1 in the sense
that m; = 7, o my; for all & < 1. Next recall that @lochooE, or just C;2. when no confu5|on can arise,
stands for the presheaf of local functions on the infinite jet bundle. Its space of sections over some
open U < J®F consists of all continuous maps f : U — R for which there exists a k € N, an open
Uy < JF*E and a smooth function f;, : Uy — R such that U ¢ w,;éo(Uk) and f = fr o eolu-

The diagram Equation ([1.1.1]) of jet bundles of finite order induces another filtered diagram by taking
tangent bundles and tangent maps:

(TE,e®) & (1)t g, e*) & Tt (peg ) T (1.1.2)

The resulting limit in the category of commutative locally R-ringed spaces is called the tangent bundle
of the pro-manifold (J®E, €*) and is denoted (TJ*E, C®). One writes Ty o, : TIXE — TIFE for
the natural maps of the limit and obtains the tangent map T'ry, : TJ®E — T M uniquely determined
by the property that T’y = T'my, o T'my, o for all k € N.

As the last prerequisite we need the concept of Roman multi-indices and their combinatorial properties
from Section . As there we denote by J° the set of ordered Roman multi-indices in an ordered
index set J. In our situation, the index set is J = {1,...,d} which entails that J° consists of a zero
element O and all finite sequences of integers of the form

I:(il,...,ik), where ke Nygand 1 <iy <i9 < ... <ip <d.

The number k is called the length of the ordered Roman multi-index I and is denoted by |I|. The
length of the zero element O is defined to be 0.



I.1. Variational calculus 1.1. The variational bicomplex

Now we have all the tools to define the main object of this section, the Cartan distribution.

1.1.2 Let p be a point of the base manifold M. Choose an open contractible neighborhood U ¢ M
of p over which there exists a coordinate system x : U — R%. Denote by & the space of smooth
sections of the bundle 7 : E — M over U and by I. for & > 0 the open interval (—e, &) around 0. By
Borel's theorem, the jet map j;° : Ey — JPE is surjective for every g € U. Call a smooth path

Y= (U,/J,) : Ié‘ - 8U X Ua t— (Jtvut)

with pg = p vertical over p if u is a constant path and horizontal over p if o is a constant path.
Smoothness of o hereby means that ¢v : I, x U — E, (t,q) — o¢(q) is smooth. The composition

Toy: L= JPE, t i (0)
then is a smooth path in the jet bundle and the derivative

_4d
Cdt

d

(% =)' (0) =

(% + ) (0) (5% () |

t=0

an element of the tangent space TpJ*E over the footpoint 6 = j°(0g). If v is vertical, the path
T o j o 7 is constant with value p which implies that the tangent vector (j° - v)' (0) has to be an
element of the vertical bundle Vi, = ker T'nys < TJ®E. Let us show that every vertical tangent
vector with footpoint # can be obtained that way. So assume that v € Vy7y, is represented by a
smooth path g : (—¢,e) — J®F such that 7 (0(t)) = p for all t. After possibly shrinking U and ¢
one can assume that there exists a fibered chart (z,u) : U — R% x R™ over some open U  E such
that w(U) = U, (x,u) is trivialising in the sense that its image coincides with the cartesian product
of z(U) and an open V' < R" and such that 7« (0(t)) € U for all . One obtains a family of smooth
real valued functions u® o g,u? o o,...,uf  o,..., where the index a runs through {1,...,n}, the
index i through J = {1,...,d}, and I through all ordered Roman multi-indices in J of order > 2.
By Borel's Theorem with parameters (Kriegl & Michor, 1997, 15.4), there exists a smooth function
s=(s',...,8"): I. x U — V such that

olll 2 e
Tﬁ(f,p):u?og(t) forallte I, ae{l,....,n} and 1€ T" .
X

Let 0 : I. — Ey be the smooth path of sections ¢ — s(t,—), u : I. — M the constant path at p
and let v = (o, ;). Then ~ is vertical and, by construction,

This shows the claim.

Next assume to be given a jet 6 € J;°E. Define the horizontal space at that jet by
CodPE = {(j* ¢ 7)' (0) € TyJ®E | v = (0, p) is horizontal over p and j“oq = 0} .

One calls CJ®E = | Jge o CoJPE the Cartan distribution on the jet bundle J®E. In the following
we will study its properties and will show that it is an involutive distribution on the jet bundle which
is complementary to the vertical bundle.



I.1. Variational calculus 1.1. The variational bicomplex

1.1.3 Lemma Let 0 € J°E be a jet and choose a trivialising fibered chart (x,u) : U — R4 x R®
around an open neighborhood of e = 71 (0). Let pn: I. — U be a smooth path with py = p,
o : I. — &y a smooth path of sections and finally s : U — E a smooth section such that that the
images of all o, and s are in U and such that j* (o) = jX(s) = 0. Denote by i the composition
x' o pu and by o® and s* the compositions u® o o and u® « s, respectively. Then the tangent vector of
the vertical path (o, p) is given by

, n 11| o)
(jyo0) (0) = Zza(&cf(o)(p) aa (1.1.3)
I

—1 Ouj

o

and the tangent vector of the horizontal path (s, i) by

d n oll+1g a o 14
Jut ; axz ZZ Ot o] )Tu*f : (1.1.4)

In these formulas, 1 runs through all ordered Roman multi-indices in the index set J = {1,...,d}.

Proof. Let v = (o, ). Then in the selected fibered chart

ey =g and (e o) () = S ()
atej®oy=p" and (uf ej* e o ()

from which the claim follows by specialization to u; = p respectively oy = s and the chain rule. [
1.1.4 Lemma Let 0 € J,°F be a jet and s1,s2 : U — E two smooth sections such that

0 =], (s1) =y (s2) -
Then for every smooth path . : I. — M with g = p the equality

. !/ . !/

(J;ns1) (0) = (55 s2)" (0)
holds true, where' denotes the derivative with respect to the parameter t. Hence,

Cod™E = { (i7051) (0) € TyJ®E | pe €* (I., M) & o = p} (115)

={ (i%52) (0) € TYJPE | pe C* (I, M) & po = p} .

1.1.5 Remark The lemma implies in particular that the horizontal space CyJ®FE does not depend
on the choice of a section representing 6.

Proof. After possibly shrinking U and & choose a trivialising fibered chart (z,u) : U — R? x R"
around an open neighborhood of s1(p) = s2(p) as above. Moreover, we can assume after possible
shrinking U and e again that both s1(U) and s2(U) are contained in U. Then compute

al[|+1 0
(axz 2 Z (’}xz(’}xl a)

a|]|+1 a P )
) = (i s2)" (0) |

(5931 aZ Z 8:61(3561 (p) ou

where pf = 2% o p, s% = u" o sj for j = 1,2, and where I runs through the Roman multi-indices in
the index set J. This proves the claim. O

J},Lt

0 -
B
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1.1.6 Lemma For every section s € Ey the map
TyM — T,M, 1/ (0) = (10 7 (5))' (0)

is the identity map, where tangent vectors at p are represented as derivatives at the base point 0 of
smooth paths i : I. — M based at p that is which fulfill o = p.

Proof. This is trivial, since 7o, o j7 (s) = pu for all t € I. O

Despite the lemma being trivial, some of its consequences are not.

1.1.7 Proposition For every smooth fiber bundle w : E — M the Cartan distribution is a smooth
involutive vector subbundle of the tangent bundle on J* E. The Cartan distribution has fiber dimension
d = dim M. In a fibered chart (z,u) : U — R% x R", a local frame for the Cartan distribution is
given by the family of vector fields

0
Di:@xi+z

n
a=1

0
a .
un=—=, t=1,...,d,
2
where the right summation is taken over all Roman multi-indices 1 in the index set J = {1,...,d}.

Proof. By Lemma it is clear that dim CyJ*E = d for every 0 € J*FE.

1.2. Euler-Lagrange equations

Regular domains

Before we come to the Euler-Lagrange equations of a variational problem we need to explain the kind
of domains over which we want to consider variational problems. To this end recall first that by a
triangulation of a topological space X one understands a homeomorphism of the form

k:|K| - X,

where | K| is the underlying topological space of a (geometric) simplicial complex in some euclidean
space R™. In the case where the topologial space X is a closed subset of a compact manifold-with-
boundary M we call the triangulation piecewise smooth if for every simplex o € K the restriction
Kls : 0 — k(o) is a diffeomorphism onto its image which means that the following two conditions
hold.

(i) For every smooth f defined on an open neighborhood of (), the pullback (k|,)*f can be
extended to a smooth function on the euclidean space R™ in which the simplicial complex K lies.

(i) For every smooth g defined on an open neighborhood of the simplex o = R™, the pullback
(/»1|;1)*g has a smooth extension to M.
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After these preparatory remarks let M be a smooth manifold of finite type that is let M be diffeo-
morphic to the interior of a compact manifold-with-boundary M. Denote by d the dimension of M
and assume that d > 0. By a regular domain in M we now understand a non-empty open connected
subset Q — M such that its closure € in M possesses a piecewise smooth triangulation & : | K| — ,
where | K| is the underlying topological space of a finite (geometric) simplicial complex. It is further
assumed that k= 1(09) and k~1(0Q N dM) are simplicial subcomplex of K of dimension < d where
092 denotes the topological boundary of € in M and dM is the boundary M\ M.

Regular domains will comprise the domains over which we consider variational problems. In most
applications, 2 will be the interior of a submanifold-with-corners of M see and [Joyce (2012)
for details on manifolds-with-corners and their submanifolds. In this section we will therefore consider
mostly this particular case and only briefly indicate how the argument goes in the more general
situation. For ease of exposition we will call a regular domain © — M such that Q < M is a
submanifold-with-corners a strongly regular domain. If additionally the boundary 052 is even smooth,
then we call Q a strongly regular domain with smooth boundary.

In most cases we choose M to coincide with the euclidean space R%. Note that R? is a manifold of
finite type and that it is diffeomorphic to the interior of the d-dimensional closed unit ball B” around
the origin. A diffeomorphism between the euclidean space R? and the interior B¢ of B is given by
the smooth ma ‘R4 B x> L z. It has inverse ¢ : B4 — R%, ¢ — L as the
s Vi v v e Y

following two equalities show.

1 1
e(Y(y)) = - y=y
1+ s V=l
1 1
) L VIR

In the remainder of this section we will identify R? with its image in the d-dimensional closed ball
—d . " . —d . e . .

B". Under this identification one can understand B™ as a certain compactification of euclidean space
R?. It is termed the radial compactification of R% and sometimes denoted by Eio. Last, we call the
boundary 5@;10 = Ego\ap(Rd) the (d — 1)-sphere at infinity and denote it by the symbol S%1.

The local case

1.2.1 Assume that Q — R? is an open subset which can be identified with the interior of a compact
submanifold-with-boundary Q < Eio under the above identification ¢ : R¢ — BZ. In particular this

means that the boundary 0f2 is a closed submanifold of E{fo. Later we will relax the assumptions
and allow © to be a regular domain in R%. We interpret the preimages ¢~1(Q) and »~1(09) as
intersections Q N R% and 00 n R, respectively. Note that both of these spaces are submanifolds of
R?, the first one possibly with boundary. Let (z!,...,2%) : Q — R? be the canonical coordinates
of Q. Observe that Q n R? and Q are oriented by the restriction of the canonical volume form
dz' A ... A dz? to Q n R We denote that restriction by w.

Further we assume to be given a trivial smooth fiber bundle 7 : E = Q x F — Q with typical fiber
F being a connected open subset of some euclidean space R™. The canonical fiber coordinates will
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be denoted by (u',...,u™): F — R™. The canonical charts of the interior of the base and the fiber
give rise to a fibered chart (z,u) : E = Q x F — R x R™. The fiber bundle 7 : E — Q and its
associated jet bundles give rise to various kinds of section spaces which we need in the following and
which we briefly now recall. Assume to be given some order m € Nu {o0} and a locally closed subset
X c Q. Let E — Q be one of the bundles E — Q or J*E — Q, where k e N U {o0}. By I'"*(X; E)
we then denote the space of m-times continuously differentiable sections of E over X that is of all
continuous sections s : X — E which have an m-times continuously differentiable extension to an
open neighborhood of X in €. The subspace of all s € I'"™(X; E) with support compactly contained
in X nR? will be denoted by TJ*(X; E). We often write T'(X; E) instead of T'°(X; E) for the space
of continuous sections. The space £™(X; E) of Whitney fields of order m over X with values in E
is defined by
E™(X;E) ={Sel(X;J"E) |3Ise T (Q E) : j"s|x = S} .

Analogously as for I'™ we denote by £7*(X; E) the space of all Whitney fields S € £™(X; E) which
have support compactly contained in X n R?. Note that each of the section spaces I'"(X; E) and
€™ (X; F) can be written as the quotient of some function space C™(U, ' x R!), where [ € N U {o0}
and U < Q is open. Therefore, each of those sections spaces inherits from the corresponding
C™(U, F x RY) the structure of a Fréchet space. As a consequence of this observation, the section
spaces I'"(X; E) and £J'(X; E) become LF-spaces in a natural way.

The next ingredient we need is a lagrangian function that is a function L € €_(J®7). Since L is a
local function on the jet bundle, it can be regarded as an element of G® (J"ﬁr) for some natural k.
Let ord(L) be the smallest of such numbers and call it the order of the langragian function. The
canonical volume form w together with the lagrangian L give rise to the lagrangian density L = L w
on the jet bundle J®x. todo: add normalized lagrangians

Before we can write down the action functional induced by the lagrangian density £ we need to fix some
boundary conditions. For now, we will restrict to Cauchy boundary conditions with compact support of
some given order m € Nu {o0}. These are encoded by Whitney fields F' € E™(0€; E) < I'(02; J™E)
with support being compact and contained in 9Q n R%. More precisely, define the space of Cauchy
boundary data of order m over the regular domain Q by

Enauchy(aQ;E) = Em(aQ’E) M F?(&Q,JmE) =
= {BeT*(0QJ"E) |3beT*(QE) : j"bloq = B & suppb € Q nR%} .

m

Cauchy (€2 E), we single out the space Xp of allowable sections of E:

Given an element Be B
Xp = {seTT(QE)|j"sloa = B} .

In other words, Xp consists of all smooth sections s : Q@ — E which fulfill the support condition
supp s € 2 nR? and the Cauchy boundary condition j™s|sq = B. Observe that by construction Xp
is an affine space over the vector space

V™ ={veTF(LE) | j™v]oq = 0} .

That space carries a natural locally convex topology given by the locally convex colimit topology of
the strict inductive system of Fréchet spaces

Vﬁz{veVm|supvaQmIE%N(0,Rd)}, NeN.
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The affine space Xp inherits the locally convex topology from V™ and thus becomes a manifold
globally modeled on V™. The tangent bundle of X then is canonically isomorphic to the product
manifold Xp x V™.

Now we can write down the action functional associated to the lagrangian density £:

S:Xp—R, s— (j*s)L = f (Loj®s) w. (1.2.1)
QnR4 QnR4

Note that even though the domain of integration might be unbounded, the integral is well-defined for

every s € X since Loj®s has compact support contained in Q2 1 R% whenever s has that property.

1.2.2 Proposition Assume that Q@ < R? is an open subset such that its closure Q in Effo is a
submanifold-with-boundary. Denote by w the canonical volume element on Q0 induced from RZ.
Assume further that 7 : E = Q x F — Q a trivial fiber bundle with typical fiber F' being an open
and connected subset of some R". Let L € C. (JOO ) be a lagrangian, and B an element of the
space BE, ,cny (2 E) of Cauchy boundary data of order m > ord(L) — 1. Then the action functional
S : Xp — R associated to the lagrangian density L = Lw is continuous. Moreover, S is Gateaux
differentiable. The corresponding functional derivative § S : TXp = X x V™ — R is linear in V'™,
continuous and given by

1|
@S(s) ”>‘ZL RO ngxl(;f?) v, (122

d
R 1€7° \I|>0

where (s,v) € Xp x V™ and where v?* is the composition u® o v.

Proof. We first show that the functional S is sequentially continuous with respect to the locally convex
topology on Xp which means that for each s € Xp and each sequence (si)ken in Xp converging to
s the sequence (S(Sk))keN converges to S(s). Since V™ is an LF space that is the locally convex
colimit of a countable strict inductive system of Fréchet spaces, there exists a positive natural number
N such that s, — S € VT for all k € N. Since the support of s is compactly contained in 2 n R,
we can assume after possibly increasing N that supp s < By (0, R%). Hence the supports all s, are

. ..a = ple .
contained in Q N By (0,RY), and for every a € N¢ the sequence ( &2k converges uniformly on
Z keN

Q nBx(0,RY) to %‘ 's " Since the lagrangian function L has finite order, the compositions L o j*s;,
and L 0j®s also have compact support contained in Q n By (0,RY), and the sequence (L ©JPSk) ken
converges uniformly on Q@ "By (0, R?) to Loj®s. Hence the sequence of integrals {5 _pa (Loj®sy) w
converges to S(s) = (g pa (L ojoos) w, and the action functional is sequentially continuous.

The proof of sequential continuity can not be extended to also show continuity of the action just by
replacing sequences with nets. The reason is that a net in an LF space, e.g. one labeled by the first
uncountable ordinal, might not have any subsequences at all. Hence, unlike a converging sequences, a
net in an LF space need not eventually be contained in one of the Fréchet spaces of the strict inductive
system defining the LF structure. This observation makes the main ingredient in the above argument
fail for the case of converging nets. One therefore needs another approach to prove continuity of S.
We will use the observation from that the locally convex topology of the LF space V™ is
defined by the collection of all seminorms

oMlya

01 ox!

pno: V" = Rxo, v sup  sup
Isasnied® |n<N




I.1. Variational calculus 1.2. Euler-Lagrange equations

Let s € X3 and choose N € N large enough so that supp s € Q N By (0, R?).

Next we prove Gateaux differentiability. To this end let sq = (s¢)1c7. be a smooth path in X defined
on some open interval I. of the form (—¢,e) with ¢ > 0 and which fulfills sp = s. Note that the
tangent vector $g is an element of the space V™™ and that every v € V can be obtained as the tangent
vector of a smooth path in X, e.g. of the path R — Xp, t — s + tv. Denote by o the order of the
langrangian and by J the index set {1,...,d}. Recall Equation for the vertical derivative of the

jet map:
d 5“'5
00/ 0
T (o) = i -y IR (1.23)
= a=11c7
In this formula, 7° denotes the set of ordered Roman multi-indices in the set 3 = {1,...,d} that is

J° consists of a zero element O and all finite sequences of integers of the form
I= (il,...,ik) , wherekeNogand1<ii<in<...<i,<d.

The number £ is called the length of the ordered Roman multi-index I. The length of the zero element
O is defined to be 0. See Section [A.8.1] for details on Roman multi-indices and their combinatorial
properties. After these preparations we now compute:

d d llsa /oL
et iy — o[ Y~ _:0 _
dt S(St) t=0 JQde dt ° <St) t=0 © Z meRd = 0! (au? ° (SO)) .
11| -
- af 0L . oMlsy (0L .,
— Z J 5 ( 0] (80)> + Z : <a oj (so)> w .
a=1VONRS ou 1€7°, [11>0 O ouf

1.2.3 We now want to find the extremal points of the functional S, if such exist. To this end we first
derive a necessary condition for so € X to be an extremal point of S.

10



.2. Semi-riemannian geometry

2.1. Causal structures

2.1.1 In this section, we let (M, g) denote a connected lorentzian manifold of dimension D = d + 1,
d € N-g. In particular this means that the signature of the semi-riemannian structure g is (1, d) or,
in different notation, (4+,—,...,—). At each point p € M the tangent space T, M then canonically
carries the structure of a D-dimensional lorentzian vector space. Denote by g, : TM — R the Lorentz
quadratic form v — g(v,v). With these notational agreements in mind we now make the following
definition.

2.1.2 Definition A tangent vector v € T'M is called
(i) lightlike or null if v # 0 and ¢ (v) =0,

(ii) timelike if g (v) > 0,

(iii) spacelike if v =0 or g (v) <0, and

(iv) causal (or non-spacelike) if v # 0 and ¢ (v) = 0.

A piecewise differentiable curve 7 : [a,b] — M, —o0 < a < b < o0, is called lightlike, timelike, or
spacelike if each of its tangent vectors is so, respectively.

2.1.3 Proposition

2.1.4

From now on, we assume that M is temporally orientable that is that

11



Part II.

Quantum Mechanics
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II.1. The postulates of quantum mechanics

1.1. The geometry of projective Hilbert spaces

1.1.1 Let H be a Hilbert space over the field K = R or = C. The associated projective Hilbert space
PH then is defined as the space of all rays in 3 that is as the space

PH = {¢ € P(H) | ¢ is a 1-dimensional K-linear subspace of }} .

It carries a natural topology which we now describe. Consider H\{0} with its subspace topology.

Then one has a natural map
7w H\{0} — PH, v — Ko

which obviously is surjective. One endows PH with the final topology with respect to 7. Next let us
introduce an equivalence relation ~ on H\{0} by defining v ~ w if there exists a A € K* = K\{0}
such that v = Aw. Obviously ~ is reflexive, since 1 € K*, symmetric, since with A € K* the inverse
A~ lis in K* as well, and transitive, since the product of two elements of K* is in K*. Hence ~ is
an equivalence relation indeed. Denote by v the equivalence class of an element v € H\{0}. Let H
be the quotient space (H\{0})/~ and 7 : H\{0} — H the quotient map.

1.1.2 Lemma The map 7 : H\{0} — PH factors through a unique homeomorphism & : H - PH
which means that the diagram

H\{0}
al \
o ——— PX

commutes and that k is uniquely determined by this condition.

Proof. If v ~ w, then the lines through v and through w coincide, hence 7 factors through a unique
continuous map x : H — PH by the universal property of the quotient space. By surjectivity of m,
k is surjective, too. By definition, x maps ¥ to Kuv, hence if Kv = Kw, then vAand w are linearly
dependant, and v ~ w. So k is injective. Continuity of the inverse k! : P — H is a consequence
of the fact that PH carries the final topology with respect to . Uniqueness of x follows from 7 being
surjective. ]

1.1.3 Lemma The projection map 7 : H\{0} — PH and its restriction 7|ssc : SH — PH to the
sphere of H are open.

Proof. By the preceding lemma it suffices to show that 7 : H\{0} — H is open. Let U < H\{0} be

open. Then
A FEO) = | AU,
AeKX*

13



I1.1. The postulates of quantum mechanics 1.1. The geometry of projective Hilbert spaces

which is again open and the first part of the claim is proved. The second part follows in the same
way, since
e (@lsxc(U) = |J AU
AeS(K)

is open for all U < SH open. O

1.1.4 Remark Strictly speaking, the projective space PH depends on the ground field K. If H is a
complex Hilbert space one therefore sometimes writes RPH or CPH to denote that the projective
space of all real respectively all complex lines is meant. In this work we agree that for H complex PH
always stands for the projective space of complex lines in H. If we want to consider the projective
space of real lines in some complex Hilbert space H instead, we write RPH.

1.1.5 The inner product on the underlying Hilbert space H induces the projective inner product or
ray inner product

(-, ) : PH x PH — [0, 1], (Kv, Kw) — (Ko, Kw) = ’|<””“’>: where v, w € H\{0},
vy ||w

[<v,w)l

vl flw]

on the associated projective space. Note that the projective inner product is well-defined, since
is homogeneous of degree 0 both in v and w.

Now we can formulate the first postulate of quantum mechanics.

(QM1) The state space of a quantum mechanical system is accomplished by a projective space PH
associated to a complex separable Hilbert space (. The elements v € H\{0} are called state
vectors, the rays £ € PH are the pure states.

If a quantum mechanical system is prepared so that it is in the state £ € PH, the probability
that a measurement detects the system to be in the state £ € PH is given by the transition
probability (%, ¢)?.

Because of their appearance in the first postulate of quantum mechanics we want to study projective
Hilbert spaces in some more depth. We will use topological, geometric and analytic tools for that
endeavor. A first result is the following.

1.1.6 Theorem Let PH be the projective space of a Hilbert space of dimension > 2 over the field
K of real or complex numbers. Then the following holds true:

(i) The projective Hilbert space PH is a completely metrizable topological space.

(i) A complete metric inducing the topology on PH is given by

d: PH x PH — Rxo, (£,¢) —inf{|lv—w||ve#, wet&|v| =|w]| =1} .

(iii) The metric d and the transition amplitudes satisfy the relation

d*(£,6) =21 (£, 6)) = 1—(A,EN forall £,¢ € PH . (1.1.1)

14



I1.1. The postulates of quantum mechanics 1.1. The geometry of projective Hilbert spaces

(iv) The Fubini-Study distance
drs : PH x PH — Rxq, (#,£) — arccos (£,7)
is a metric on PH which is equivalent to the metric d. More precisely
d(£,¢) < dps(#£,6) < V2d(%,¢) forall £,¢ € PH . (1.1.2)
The diameter of PJ with respect to the Fubini=Study distance equals 5.

(v) The mapping P : PH — B(H) which associates to every ray % the orthogonal projection onto
it is a bi-Lipschitz embedding. The gap metric

dgap : PH x PH — Rxq, (#,2) — [P(£) — P(¢)|
obtained by restricting the operator norm distance to PH is equivalent to d and satisfies
1
V2

Proof. ad((ii)lLet us first show that the map d is a metric indeed. By definition, d is non-negative
and symmetric. Assume d(%,¢) = 0 for two rays £,Z. For given unit vectors v € £ and w € ¢ there
then exists a sequence (0%)ken < S' such that

A(#,6) < dgap(£,6) = \/1 — (£,E\> < d(£,£) forall #,£ ¢ PH . (1.1.3)

lim |v —opw| =0.
k—0o0

By compactness of S' we can assume that the sequence (o} )ren converges after possibly passing to
a subsequence. Let o € S! be its limit. Then |v — ow| = 0, hence £ = #. Now let £,¢, 7 € PH
and z € s a representing unit vector. Then

d(#,¢) =inf {Jv—w| |ve A wesf&|v]| = |w|=1} <
<inf{lv—z|+ |z —w| |ve R wef&|v] = |uw]| =1} =
=inf{lv—z| |ve#&|v]| =1} +inf {|z —w| |we £ & |w| =1} =
=d(#£,7) +d(4,7)
hence d satisfies the triangle inequality, and therefore is a metric.

Next we prove that the metric topology of d coincides with the quotient topology of 7. Let v, w € SH.
By definition of the metric d one then has

d(Kv, Kw) < v —w] .
This implies that for all € > 0
7 (Bsgc(v,€)) < Bpy (Ko, €) ,

where Bgg¢(v, €) denotes the e-ball around v in the sphere with respect to the norm and Bpg¢ (Ko, €)
the e-ball around Kuv in the projective Hilbert space with respect to the metric d. Hence the quotient
topology on PH is finer than the metric topology. If for given € > 0 a § > 0 is chosen so that § < ¢,
then for every ray £ with d(Kv,#) < § there exists an element w € £ n SH such that v —w| < €
which means that # = m(w) € 7(B(v,€)). Hence

Bpj{(KU, 6) T (ng{(U,&))

15



I1.1. The postulates of quantum mechanics 1.1. The geometry of projective Hilbert spaces

and the quotient topology on PH is coarser than the metric topology. So d induces the topology on
PH as claimed.

It remains to verify that d is a complete metric. To this end observe first that for every v € SH and
ray ¢ there exists a representative w € £ n SH such that (v,w) = (Kuv,#). We will call such a
representative of £ distinguished with respect to v. Now let (£, )nen be a Cauchy sequence of rays.
Then there exists an increasing sequence of natural numbers ng < ... < mngp < ngy1 < ... such that

d(Cn, tm) <

W for a” n,man.

Choose a representative vy € £, " SH and let v; € SH be a representative of £, distinguished with
respect to vg. Then

1
Hvl - UOH = \/2(1 - %6<U0’v1>) = \/2(1 - Kl’ﬂnmfnlﬂ) = d(fnmfnJ < 5 :
Now assume we have constructed vy, ..., v € SH such that Kv; = £, for [ = 0,...,k and such
that for [ =0,...,k—1
1
||Ul+1 — 'UZH < W . (114)

Let vy 1 € SH be a representative of 7, ., distinguished with respect to v. Then

k+1

1
”UR—H - UkH = \/2(1 - 2Re<vl’€-ﬂ—1vvk>) = \/2<1 - Kfnk+l7fnk>i) = d(fnm-w”ﬂnk) < W .

We thus obtain a sequence (vg)ken in H such that (1.1.4)) is fulfilled for all [ € N. The sequence
(vk)ken is even a Cauchy sequence since for n > m > k

n—1 n—1 1 1
[vn — vm < Z lvg+1 — vi| < Z oF+l < gm -

k=m k=m

Let v € H be its limit. Then
khm d(K’U, fnk) khm H’U UkH 0

Hence the sequence of rays (£, )nen converges to the ray Kv and PH is complete with respect to the
metric d. Claim[(i)]is now proved as well.

ad((iii)Let #,Z be rays in H and v € £, w € ¢ representing unit vectors. Let A € S! such that
(v,wy = A(#,¢) and o € S! arbitrary. Then compute

v —ow|? = 2(1 — Relv,ow)) =2(1 — (£, ) ReTA) =2(1 — (4,6)) .
For o = A, equality holds, hence
&2(%,¢) = inf {Hv —owl?|oe sl} = 21— KA. 2)) .

With £,7,v,w as before and 6 = d(#£,¢), the claimed inequality now follows immediately:

d2(#,¢) = & (1—i52) =2(1—(4,2)) (1—;(1— Kfé,f>|)> —1—(8,0)* .
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I1.1. The postulates of quantum mechanics 1.1. The geometry of projective Hilbert spaces

ad|[(iv)[The map dps is symmetric by symmetry of the projective inner product. By the assumption
dim H > 2, the image of (-, -} is the whole interval [0, 1], since PH is connected, (-, ) is bounded
by 1, KZ,¢)| = 1 for every ray ¢ and since there exist orthogonal rays. The image of dgs therefore
coincides with [0, 5] which already entails the claim about the diameter. By strict monotony of
arccos, des(%#,¢) = 0 if and only if (2,7 = 1. By this is the case if and only if d(£,£) =0
which means if and only if Z = #. Let us now show that dfs satisfies the triangle inequality. To this
end let 2,7, 7 be rays in . If the Fubini-Study distance between any two of these rays is zero,
the triangle inequality obviously holds true, so we exclude that case. Choose representatives v € £,
w € ¢, z € 7 such that all have norm 1. After possibly multiplying v and z by elements of S' N K
one can achieve that
(vywy=(A£,¢) and {(w,z)=K¢,7) .

Let 6 = arccos(v,w) and ¢ = arccos{w, z). Then 0 = dgs(#,¢) and ¢ = dps(?, 7). Now let x be
a unit vector in the plane through v and w which is orthogonal to w and y a unit vector in the plane
through w and z which is orthogonal to w. After possibly multiplying  and y by elements of S! N K
one can achieve that (v, z),{z,y) € [0,1]. Then

v={v,wyw+{v,xyr and z=<{z,wyw+{z, Yy .
By 6,9 € [0,%] and (v,z),{z,y) = 0 one concludes
v=cos@w+sinfxr and z=cospw+sinpy.
Hence, by the triangle inequality for the absolute value and the Cauchy—Schwarz inequality
|{v, 2)| = |cos @ cosp +sinf sinp (x,y)| = cosh cosp —sinf sinp = cos(d + ¢) .
Since arccos is monotone decreasing, one obtains
drs(#, 1) = arccos [{v, 2)| < 0+ ¢ = drs(#,€) + drs(€, 1) .
So the Fubini-Study distance satisfies the triangle inequality and is a metric indeed.

Last we need to prove that the Fubini—Study distance is equivalent to d. To this end consider the
functions
2

f:[0,4/2] - R, s — arccos (1 - 82> and g¢: [0, g] — R, t—/2(1 —cost) .

Then both functions are continuous and differentiable on the interior of their domains. Now observe
that f(0) = ¢(0) = 0 and compute

S S 2

f'(s) = = = <V2 for s€(0,/2)
Jio(-9) W vise T

2

and
V2 sint V2 T
t)= 5 ——==5"V1 t<1 forte(0,5).
IO =5 Tcosi 2 VIHos orte(0,3)
By definition of drs and (1.1.1]), the mean-value theorem then entails
d(#,6) = g (dps(£,¢)) < dps(#,6) = f(d(#,6)) < NV2d(A,¢) forall £, € PH .

Hence the estimate ((1.1.2)) is proved and the metrics d and dgs are equivalent.



I1.1. The postulates of quantum mechanics 1.1. The geometry of projective Hilbert spaces

ad|[(v)Recall that the operator norm distance of P(#) and P(¢) is given by
|P(#) — P(¢)|| = sup {| (P(#) — P(¢))z| | z € SH} . (1.1.5)

Choose normalized representatives v € £ and w € £. After possibly multiplying w by a complex
number of modulus 1 we can assume that (v,w) = (£,£)] = 0. If (v,w) =1 or in other words if v
and w are linearly dependent then £ and ¢ coincide and the claim is trivial, so we assume that v and
w are linearly independent. First we want to show that

|(P(#) — P(£))2]| <1 — [(v,w)]> forall zeSH . (1.1.6)

To this end expand z = zll + 21, where 2!l lies in the plane spanned by v and w and zt is perpendicular
to that plane. Then

(P(#£) — P(£))z = {z,0)v — (z,wpw = L vy — ClLwyw = (P(#) — P(£)) 2.

Hence it suffices to verify (1.1.6]) for z € SH n Span(v, w). Observe that there exist unique elements

™

¢ € [0,%] and p € S N K such that (z,v) = Ticosp. One can then find a normalized vector

w' € Span(v,w) perpendicular to v such that

pz = cospv + Sin<pwl
Note that with this

w = (v, w + (w,wHwt  and  [(w,wHF =1 — [(v, w)H]* .

Now compute

[(P(£) = P(@))2]" = | (P(#) = P(2)) =] = <z, 00 = (2, wpw]? =
= [(uz, ) = 200, w) Re (uz, v){pz, w)) + [(uz, w)l? =

— cos?p — 2cos p (v, w) (cos ¢ (v, w) + sin p Rew, wi>)

+ cos?o |(v, wH|? + 2 cos o (v, w) sin g Rew, wb) + sin?e |(w, wbH|? =

=1~ (v, w)f*.
This proves (|1.1.6)), but also implies by (1.1.5) that
2 2
|[P(#) = P(O)|" = 1= [Ko,w)|? = 1 — (%, )" .
The claim now follows by [(iii)] and the theorem is proved. O
After having examined some topological properties we come now to the geometry of projective Hilbert
spaces.

1.1.7 Theorem The projective Hilbert space PH of a Hilbert space of dimension > 2 over K has
the following differential geometric properties:

(i) PXH carries a natural structure of an analytic manifold modelled on a Hilbert space isomorphic
to each of the Hilbert spaces V., = (Kw)*, where w € H is a unit vector.
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I1.1. The postulates of quantum mechanics 1.1. The geometry of projective Hilbert spaces

(i) Let SH < H\{0} be the sphere in 3. Then the restriction
7|sy : SH — PH, v — Kv

is a real analytic fiber bundle with typical fiber S' in the complex case and typical fiber 7./2 in
the real case.

(ili) Endow SH with the riemannian metric g inherited from the ambient Hilbert space. Then there
exists a unique riemannian metric ges on PH such that 7|sg¢ : SH — PH becomes a riemannian
submersion. This metric is called the Fubini-Study metric. Its geodesic distance coincides with
the Fubini-Study distance dfs.

(iv) In case H is a complex Hilbert space, the projective space PH carries in a natural way the
structure of a Kihler manifold. Its complex structure is the one inherited from H, and its
riemannian metric is the Fubini-Study metric.

Proof. ad[(i)] For a given unit vector w € SH consider the linear form w : H — K, v — (v,w).
Let V,y = kerw” = (Kw)* and Uy, = 7(3\Vy,). Then, by Theorem , one has the orthogonal
decomposition H = V., @ Kw which gives rise to the orthogonal projection pry, : H — V,,. Next
observe that U,, = PH is open since 7~ 1(U,) = 3\V,, is open and P carries the quotient topology
with respect to m. Now we can define a chart hy, : Uy, — V,, by

v v
hy(Kv) = pry,, <<v,w>> = s w forve H\V, .
The map hy, is well-defined since (v, w) # 0 for all v € H\V,, and since ﬁ = % for all A € K*.
Moreover, h,, is continuous by continuity of the composition hy, o mlsay,, . If hy(Kv) = hy(Ko'),

then
!

(s ) =0 ™ (G ) O

hence Kv = Kv/, so hy, is injective. The map V,, — Uy, y — 7(y + w) is obviously continuous and
inverse to hy, since hy, (7T(y + w)) =y for all y € V,, and since h,, is injective. So we have proved
that hy, : Uy — Vo is @ homeomorphism.

Next observe that all the Hilbert spaces V,,, w € SH are pairwise isomorphic since each of them has
codimension 1 in . After this observation we show that for all v, w € SH

hw(Uy nUy) = Viu\ (= Prg, w + Vi N Vy) (1.1.7)

Assume that y € V,,. The relation v ¢ (— prg, w + V., N V,,) then is equivalent to pry, (y+w) # 0,
which on the other hand is equivalent to the existence of some A\ € K* and z € V, such that
y+w = Az +v). Since hi;'(y) = 7(y + w), the latter is equivalent to the existence of an z € V,
such that hy,'(y) = 7(x + v). But that is equivalent to h_'(y) € U, n U,. This proves (1.1.7).

The transition map between the chart h,, and the chart h, is now given by

Y+ w
ly +w,v)y
But this map is analytic as a composition of analytic maps, hence any two charts are C“-compatible.
Since PH is obviously covered by the open domains U,,, w € SH, the projective Hilbert space PH

becomes an analytic manifold locally modelled on a Hilbert space isomorphic to each of the V,,
w € SH.

hy o hful : Vo \ (= prigy w + Viy 0 Vi) = Vi \ (= prg, v + Vi 0 Vy) , y = Pry,
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I1.1. The postulates of quantum mechanics 1.1. The geometry of projective Hilbert spaces

ad|(ii)] Fix a unit vector w € SH, let V,, = (Kw)* as before and and put

~ Vu fK=R,
Vw = . .
Vo ®@iRw ifK=C.
Then V,, is the orthogonal complement of the real line Rw with respect to the real inner product

MRe{—, —) on H. Hence any vector v € 3 can be uniquely represented in the form v = vow + 9 where
vp = Re{w,w) € R and © = pry (v) € Vy. Put N,y = SH\{—w}. The stereographic projection

~

v
14+ v

Guw : Ny = Vy, v —

then is a chart for SH with inverse

I \wa — Ny, 2 +— ((4 — HZHQ)’LU + 42) )

1
4+ 2]

4—r

i > 1 for all » > 0 and

Since

oo (I = e (= 121202+ @) = 1 forall =2 ¥,

the map g;, has image in N,,, indeed. Moreover, for z € Vo,

2 4

T P P P
A+

Juw og;(z) =

1+
and for v € N,, by application of the equality |vo|? + |0]|> = 1,

o guv) = g (—2— ! 41— P+
v) = D) = - vjTw v =
Gw © Guw Gw 1+ v 4+ﬁ“@”2 (1 +v)? 1+ v

1

= gz o (o) = w201+ v)i) =

20 + vo)w + 2 + vg)v Vow + v v .
(1 UO) 0 0 0 0

Therefore, g,, are g,, mutually inverse as claimed. Observe that for v € S}\{w} the transition map
9w © 9y Vo\{gu(—w)} = Vi \{gw(—v)} is given by

e (1 (= el 42)) =
- 2 . (1
Tt e O — [Py + 4z, wp) PV \ T P

2
" e P )

which is real analytic. Since the open sets N, with w € SH cover the sphere SH it thus becomes
a real analytic manifold modelled on a possibly infinite dimensional real Hilbert space. Now consider
the composition

(4~ 20 + 4z)) -

4 — HzH2)v +4z — Re(4 — HZHZ)U + 4z, w>w) ,

(4 — |z|*)w + 4z > 4(z — (z,wHyw)

~w 2S w — Vw, '_’hw w = = .
Vu\28V = Vu, 2 hw om0 g, (2) prvw<4—nz|2+4<z,w> I- [P + &z, 0)
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This is a real analytic map for every w € SH, so m|gg is real analytic. Let us show that it is a principal
fiber bundle. To this end put G = Z/2 in the real case and G = S! in the complex case and note
that GG acts smoothly on SH by scalar multiplication. Since G is abelian, we can write this also as a
right action - : SH x G — SH. By definition of the projective Hilbert space this right action is free
and transitive on the fibers of the projection 7 : SH — PH which therefore are homeomorphic to G.
For each w € SH the map

Fu i SH\Vy — Up x G < PH x G, v > <Kv,<v’w>>
v, w)|
now is a bundle trivialization as the following argument shows. By construction, f,, is real analytic

with inverse
hw (Kv) +w

fo i Up x G — SH\Vy, (Ku, \) ro> A\ 20 T8
\ )™ Mha(Ko) + w]

Indeed, fy, is obviuously surjective and
_ <an> hw(KU) +w _ <U>w> <U?}w>

[, 0] he(Ko) +w] — [<v, w) s

fi © fuw(v) = forall v e SH\V, .

Observe that pry fi,(v-A) = (pry fi,(v))A for all v € SH\V,, and A € G, where pr, denotes projection
onto the second coordinate. Finally note that for v, w € SH and z € SH\(V, u Vu),

B B ho(Kz) +w \ o) _ (#,v)
e dete) = 1 () — (K2 ~ - 25

where - : (PH x G) x G — PH x G denotes the right action ((Z,p),A)) — (€,p) - A = (£, pA).
Hence sy : SH — PJH is a real analytic G-principal bundle with local trivializations f,,, w € SH.
O

1.1.8 Remark Notice that the chart h,, in the proof of@ can be written as

hy(Kv) = <vvw> —w

This is the same as for the charts of finite dimensional projective space KP". Indeed, we can choose

w as a basis element, say e;, K =0,...,n and we have a line
[vo:...:v5 ... v,) € KP"?
represented by the vector v = (v, ..., Vk, ..., V), Where vy # 0. Then the standard chart is obtained
as follows. First normalize the vector representing the line in the k-th coordinate, i.e. divide by (v, w):
v v
[0:...:1:...:n} ,
UV UV
and then map this to K" via dropping the 1 in the k-th coordinate:
Vo 1. . Un Vo Vk—1 Vk+1 Un
— ol — > —, .., , yeees— | -
Vg Uk Vg Vk Vg Uk
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1.2. Quantum mechanical symmetries

Automorphisms of the projective Hilbert space and Wigner's theorem

1.2.1 Assume that a quantum mechanical system is described by the projective Hilbert space PH and
that two observers O and O’ observe the system. While observer O describes the states the system is
in by rays £2,2,¢;,,... € PH, observer O describes them by possibly different rays £’, ¢, ¢/, ... € PK.
In other words this means that from the point of physics the rays are not invariant under observer
change. Rather does the observer change give rise to a map A : PH — PH, £ — A¢ = ¢'. This
map has to be invertible because the observer change is reversible. Even though rays describing the
states of the system do change under an observer change, the corresponding transition probabilities
remain invariant by the paradigm that the laws of (quantum) physics do not change from one observer

to another. Mathematically this can be expressed by
KAB, ALY = (£, 60 forall £,¢ € PH .
This leads us to the following definition.

1.2.2 Definition Let PH, PH; and PH, denote projective Hilbert spaces. One then calls a map
A : PH; — PH, an isometry, if

KAZ,AC) = (#,¢) forall 2,6 € PH; .

A bijective isometry A : PH — PXH is called an isometric automorphism, a Wigner automorphism or
just an automorphism.

In quantum mechanics, an automorphism of a projective Hilbert space PH is called a symmetry of
the quantum mechanical system described by PJH.

1.2.3 Because the composition of isometric maps between projective Hilbert spaces is an isometric
map and the identity map on a projective Hilbert space is isometric the projective Hilbert spaces as
objects and the isometric maps as morphisms form a category which we call the Wigner category
denoted it by Wig. The Wigner automorphisms are then the automorphisms of that category.

The automorphisms of a projective Hilbert space PH form a group denoted by Aut(PF).

1.2.4 From now on in this section let the symbol JH stand for a complex Hilbert space of dimension
> 2. We want to examine what maps on H induce automorphisms of the corresponding projective
Hilbert space.

If S : H — J is a unitary operator that is S € GL(H) and {(Sv, Sw) = (v, w) for all v,w € H,
then S : PH — PH, Cv — CSv is well-defined and an automorphism of PH. But not every
automorphism of PH is of the form S with S € U(H). Namely let T': H — 3 be an anti-unitary
map that is T € GL(H,R), T(Av) = AT for all v € 3, A € C and (Tw,Tw) = {(v,w) = {w,v)
for all v,w € H. Then T:PH — PH, Cv — CTw is also well-defined, invertible and preserves
transition probabilities. Therefore 7' € Aut(PH). We will later see that T is not equal to any of
the automorphisms S with S € U(H). Observe also that by the dimension assumption on H there
exists an anti-unitary transformation, for example the real linear map T : H{ — JH which acts on some
initially chosen Hilbert basis (v;);es by T'(vj) = v; and T'(ivj) = —iv;.
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I1.1. The postulates of quantum mechanics 1.2. Quantum mechanical symmetries

One easily checks that the products ST and T'S of a unitary operator S : H — H and an anti-unitary
operator T : H — X are anti-unitary. If T7, T : H — H are both anti-unitary, then the product 7175
is unitary. Hence we obtain a new group AU(X) consisting of all unitary and anti-unitary operators
on H. The map

7 : AU(H) — Aut(PH), S — S

then is a group homomorphism. Its kernel coincides with U(1) =~ S!. To see this let 7(S) = idps.
Then for every ray ¢ there exists a complex number s such that Sv = puc,v for all v € £. By
unitarity |pz] = 1. Let v, w € H be two linearly independant vectors of norm 1. Since

B (w—v) (W —v) = S(w —v) = pcyw — pcov

one has 0 = (M(C(w—v) - M(Cw)w + ()u(Cv - /L(C(w—v))v which implies ¢y = He(w—v) = HCo by linear
independence of v and w. Hence all the uc, coincide and S = pidye for some complex number
pe U(1) = S A consequence of this observation is also that the homomorphism 7|y : U(H) —
Aut(PH), S — S is not surjective because for every anti-unitary 7" and unitary S the product 751
is anti-unitary, hence can not be an element of U(1). We denote the image of U(H) under 7 by
U(PJH) and call its elements the unitary automorphisms of PX.

1.2.5 Theorem (Wigner's theorem, Wigner| (1944))) Let 3{ be a complex Hilbert space of di-
mension > 2. Then the sequence of group homomorphisms

1 — U(1) — AU(H) 5 Aut(PH) — 1
is exact.

1.2.6 Remark Wigner's theorem was first stated in |Wigner| (1944), but with an incomplete proof.
Only several years later complete and independent proofs of Wigner's result were given by [Uhlhorn
(1962), |Lomont & Mendelson| (1963), and Bargmann| (1964).

Proof. Wigner's theorem is an immediate consequence of the precedinmg considerations and the
following more general result. O

1.2.7 Theorem (Optimal version of Wigner's theorem, |Gehér| (2014)) Let H be a complex Hilbert
space of dimension = 2. Then for every isometry A : PH — PH there exists a linear or conjugate-
linear isometry S : H — H such that A = S, where S is the isometry on PH which maps the ray
Cv with v e H\{0} to the ray CSwv.

Proof. To prove the claim we will follow the elementary argument by Gehér| (2014). O

Lifting of projective representations and Bargmann's theorem

1.2.8 Theorem (Bargmann’s Theorem) Let H be a complex Hilbert space and G a connected and
simply connected Lie group with H?(g,R) = 0. Then every projective representation 7 : G — U(PH)
can be lifted to a unitary representation o : G — U(H) that ismoo = 7, where 7 : U(H) — U(PH)
is the canonical projection.

1.2.9 Remark The lifting theorem was proved first in |[Bargmann| (1954). The short proof we present
here goes back to |Simms| (1971)). We closely follow his argument.
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Proof of the theorem. Let E be the fibered product of 7 and 7 with the canonical homomorphisms
F:E — U(H) and 7F : E — G. For the resulting commutative diagram of groups with two exact
rows

1 u(1) E T~ G 1
.
1 u(1) U(H) —— UPH) —— 1

we want to construct a section s : G — E of 7% : E — G which is a splitting meaning that s is a
group homomorphism and 7% o s = idg. With the construction of such an s we are done because
then the unitary representation 7 o s is a lifting of the projective representation 7 : G — U(PXH).

Observe that E' is a Lie group by Kuranishi's theorem, see (Montgomery & Zippin| |1955| §4.3), since
E is central extension of a Lie group, hence locally compact, and there exist local continuous sections
0:U — E thatis U < G is open and 7¥ o o = idy.

The short exact sequence of Lie groups
E
1—Ul)—F S G—1
induces a short exact sequence of Lie algebras
TrF
0—R—e¢e—>g—0, (1.2.1)

where ¢ is the Lie algebra of E and g the one of G. Observe that T'7¥ is surjective with kernel R
being in the center of ¢. Choose a linear map A : g — ¢ such that 7% o A = id;. Put ©(z,y) =
[A(z), A(y)] — A([z,y]) for all x,y € g. Then

Trl o O(z,y) = [TrF o XNz), Tn¥ o AMy)] — TxF o AM([z, y]) = [z,y] — [z,y] =0 .

Hence ©(z,y) is in the kernel of T7” which means that © is a map g x g — R. By definition,
O : g x g — R is skew symmetric. Let us show that it satisfies the Jacobi identity. Compute, using
the Jacobi identity for the Lie algebra bracket and the fact that © has image in the center of ¢,

O([z,y]), 2)+ O([y, 2], #) + ([, 2], y) =
= [A[z, y]), A2)] + Ay, 21), A@)] + [A([2, 21), Aw)]—
= MLz, ], 2]) = Ay, 21, #]) = Al 2], 91)

+ [[A
[©

[[A(z), A(y)], A(2) ), A(2)], A@)] + [[A(2), A)], Ay)] -
[ —

— [O([z,y]), A(2) [y, 21), Ax)] = [O([=, 2]), A(y)]
Therefore, © is a Lie algebra 2-cocycle. By H?(g,IR) = 0, there exists a linear 6 : g — R such that

=0t
O(z,y) = 0([x,y]) for all z,y € g. Put u(z) = A\(xz) + O(x). Then, since 0 has values in the center
of e,

| ( )
1= 1[6( 0.

[(2), p(y)] = [A(@) + 0(2), A(y) + 0(y)] = [M=), A(y)] =
= O(z,y) + Az, y]) = 0([z,y]) + Az, y]) = p(lz,v]) -

Hence 1 : g — ¢ is a Lie-Algebra homomorphism and fulfills

Trl o pu(z) = TrP (A=) + 0(x)) = TrP (N x)) =z forallzeg.

24
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So u is also a section of T'7¥ which shows that the short exact sequence of Lie algebras (1.2.1) is
split.

By m1(G) = 1, the Lie algebra homomorphism 1 : g — ¢ has a lifting to a group homomorphism
s: G — E such that 7% o s = id,. The proof is finished. O

25



I1.2. Deformation quantization

2.1. Fedosov’'s construction of star products

The various Weyl algebras of a Poisson vector space

2.1.1 Definition By a Poisson vector space over the field K of real or complex numbers one un-
derstands a pair (V,II) where V is a finite dimensional vector space over K and IT € A2V is an
antisymmetric bivector.

Given two Poisson vector spaces (V,II) and (W,
of Poisson vector spaces if f, Il := (f ® f)II =

E), a linear map f : V — W is called a morphism

[1]

Poisson vector spaces together with their morphisms obviously form a category which we denote by
PVeck.

2.1.2 Example Let V = R* or V = R?>"*!. Then V together with the bivector Ilcan = > _; ﬁA

% is a Poisson vector space. One calls Il.,, the canonical (constant) Poisson structure on V.

2.1.3 Let rkII be the rank of II that is the dimension of the image of the musical map
V>V, a—alll,
where
N N k ‘
as APV - ARy, va A AV Z Z(—l)j+1<0¢ﬂ/i,j> AU Ao AU Ao AU
i=1 i=1j=1

denotes the interior product of a 1-form with an alternating k-vector. Then rkII is even dimensional,
and (V, IT) isomorphic as a Poisson vector space to the product of (R*™® I TI,,) with (R4m V=rkII ),

2.1.4 Remark The category PVeck is dual to the category PSVeck of presymplectic vector spaces
over K that is the category of all finite dimensional K-vector spaces W together with a (constant)
2-form w e A2W*.

A contravariant isomorphism between these two categories is given by the dualization functor * :
PVeckg — PSVeck which maps V' — V* and the bivector IT on V to the 2-form w : V* x V* — K,
(o, B) — B a(aII). Its inverse is again given by dualization.
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11.2. Deformation quantization 2.1. Fedosov's construction

2.1.5 The bivector IT of a Poisson vector space (V,II) turns V into a Poisson manifold with bracket
{—,—}:CP(V) x C*(V) — C*(V) given by

{f, g} =dga(df JII) for f,ge CP(V) .

By construction, {—, —} is antilinear and a derivation in each component. Since for all linear functions
A, 12V — K the Poisson bracket {\, u} is constant, the Poisson bracket {{\, 1}, v} of three linear
functions vanishes, hence the Jacobi identity holds for linear and affine functions. This implies that
the Jacobi identity is satisfied for all smooth functions, hence {—, —} is a Poisson bracket on V' indeed.
We call it the constant Poisson structure associated to II.

2.1.6 Definition The Weyl algebra of a Poisson vector space (V,II) is defined by
AVI) =TV¥/(a®B-BRa—LBi(asll) |a,BeVF),
where (X)) stands for the ideal generated by X < T*V*.
2.1.7 Remarks (a) To a presymplectic vector space (W, w) one associates the Weyl algebra
AW, w)=TW/(v@w—-—w®v—wcL (viw) | v,we W),

where L denotes the interior product of a vector with a k-form. If (W, w) is the dual of a Poisson
vector space (V,II), then the two Weyl algebras A(V,II) and A(W,w) coincide by definition.
We will silently make use of this fact in the following considerations.

(b) Let K be a field of characteristic 0 and K[z1, ..., x,] the polynomial ring over K in n (commut-
ing) indetereminates. The n-th Weyl algebra A,,(K) over K is then defined as the subalgebra of
the endomorphism ring Endg (K[x1, ..., z,]) generated by the elements

T Klzg, ..o zn] = K[z, .. oyzn], p—o kD
and 5

Or - Klzy, ... 20| = Klzg, ... 2], p— 6—1? ,

T
where k runs through 1,...,n. The commutation relations for these operators are, using the
Kronecker delta,
[Pk, 2] =0, [0k, 0] =0, [k, %] = Opy - (2.1.1)

Recall that A,,(K) coincides with the ring of differential operators on K[z1,...,x,] in the sense

of Grothendieck. For a proof see |Coutinho ((1995)).

(c) Let w be a the canonical symplectic form on R?". The Weyl algebra A(R?",w) then coincides
naturally with the algebra of differential operators on R™ with polynomial coefficients. To see this
denote the canonical basis of R*" by (Q1,...,Qn, Pi, ..., P,) and the corresponding coordinate
functions by (q1,...,qn,P1,-.-,Pn). The commutators of these basis elements in the Weyl
algebra are

[Qr, Q] =0, [P,P]=0, [P, Q=0 - (2.1.2)

Therefore, any element of A(R?", w)
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11.2. Deformation quantization 2.1. Fedosov's construction

Next consider the symmetric (covariant) tensor algebra S®*V* over V. Recall that it is defined as the
algebra with underlying vector space

*=Pstvr, (2.1.3)

keN

where S¥V* < ®" V* denotes the space of all symmetric (covariant) k-tensors in V. An element
t € S¥V* is called homogenous of symmetric degree deg,t = k. It can be written in the form

b= t1® .. Otig ,

iel

where I is a finite index set, and #;1,...,t; ) are elements of the dual V*.

The bundle of formal Weyl algebras

Let M be a smooth manifold. Recall the notion of the symmetric (covariant) tensor algebra bundle
S*T*M over M. It is defined by
S T*M = P SFT* M , (2.1.4)
keN
where SET*M = | J,cp, SFTM < Q¥ T*M is the bundle of all symmetric (covariant) k-tensors.

Note that we have a canonical (fiberwise) isomorphism SFT*M = (SkTM)* which leads to the
canonical identifications

S*M =P SkT*M = P S"TM =S*TM .
keN keN

An element t € SKT* M is called homogenous of symmetric degree deg.t = k. It can be written in
the form
t=Y i ®. Qthy
i€l
where [ is a finite index set, and ¢; ;, ..., %x; are elements of the cotangent bundle 7*M having the
same footpoint as t. Every element of the symmetric tensor algebra bundle S®* M can be expanded as
a finite sum of homogeneous symmetric tensors.

The (fiberwise) symmetric product v : SM x; SM — SM is constructed by defining it, for each
p € M, first on homogeneous elements t = >, 11, ® ... ty; € S’;M and s = Zjej Skt1,; ® ... ®
Sk+1,j € SlpM by

1
v (t, s)—tvs—k— Z Z Vo(1),ij @ -+ @ Vg(k1),45 » Where
" 0€Sgy i€l,je]

2.15
fl<m<k, ( )

Um,zg
smj ifk<m<k+1,

and then extending it linearly in each component to the whole fiber SSM x SP M. Using the canonical
symmetrization operator

S:TM =T'TM - SM, t =Y 11, ® .. @tri = > > te(1)i ® - @ty

iel €Sy i€l
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11.2. Deformation quantization 2.1. Fedosov's construction

we can also write

tvs— <kl‘;l> S(t® ). (2.1.6)

Together with the symmetric product SM now becomes a graded algebra. Note that it is canonically
isomorphic to the algebra C¢,(T'M) of smooth functions on T'M which are polynomial in the fibers
of TM.

Let us define an action of an antisymmetric bivector field B = Y B! ® B? € Q*M on SM ® SM
by
SM®SM5t®s—> B(t®s) =Y B} ,t®B?,s€ SM®SM. (2.1.7)
L
Under the isomorphism SM — C.7,(T'M) the bivector field B acts as a bidifferential operator, i.e. we

have for f,g € Coo|(TM), v,we T, M and z € M

L g+ sB?)| (2.1.8)

B(f®g)(v,w) = Y BLf()®Blg(w) = Y 4 fo+tBY) 4
L L t=0 s=0

With these preparations in mind we are now able to define Fedosov's notion of the bundle of formal
Weyl algebras.

2.1.8 Definition Let (M,w) be a symplectic manifold of dimension 2n and II the corresponding
Poisson bivector. The formal Weyl algebra AM of M is then defined as the space SM|[#]] of formal
power series with coefficients in SM together with the Moyal product o given by

1 [in\" . ih

fog_Ek!<2> V<H (f®g)>—v<exp(2H> f®g>. (2.1.9)
keN

Note that in this definition all operations on SM were naturally extended to SM|[[A]].

On the Weyl algebra bundle AM we introduce the Fedosov filtration

AM =AM c A'M c A’M c ...c A*M c .. (2.1.10)
by defining
APM =St = > tyhl e SM[[A]] : tyeS™M & ty =0forr+2 <k . (2.1.11)
I,reN

The topology generated by this filtration is called the F-topology. Furthermore we define the F-degree
degg t of an element t € AM as the supremum of all k € N with t € A¥M.

By definition degg 0 = o0, degg /i = 2 and degg A = m for any covariant m-tensor field A.

We have to show that o is a well-defined product on SM[[A]] and that the A*M define a filtration
on the algebra AM indeed. It suffices to show that o is associative and that A¥M o AIM < AR
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11.2. Deformation quantization 2.1. Fedosov's construction

holds for all k,1 € N. Associativity of o follows from the following chain of equalities:

fogroh=3 Y <h> v I

keN leN

vII (f ® g) ®h>

VI (f ® g) ®h>

2.2 ) o) gy

reN k+l+m=r

=3 3 <m> v (M T, (F@ g @)

reN k+l+m=r

-» ¥ (§) v (f®vﬂkg®h>)

reN k+l=r

~ folgoh).

Here we have denoted by II,,; (a ® b® c) the natural action of II on the ¢, k-factors of a ® b® ¢ and
have used the Jacobi-identity for the Poisson bivector II. The second claim follows immediately from
Eq. (2.1.9) and the definition of A¥M.

to do:By definition SM is a graded C* (M )-module.

Besides AM we will consider in the following differential forms with values in AM, i.e. we will consider
the space QAM = AM @ QM = (SM @ QM)[[h]] = (SM ®QM)N. By o and the exterior product
on QM this vector space carries a multiplicative structure which also will be denoted by o. A second
multiplicative structure, which we denote by -, comes from the symmetric product on SM and the
exterior product on QM. The filtration on AM induces one on QAM by

OAM c A'AM QM c ...c AAM QM c ...; (2.1.13)

thus making (QAM, o) into a filtered algebra. Additionally QAM posseses a graduation coming from
QM:
QAM = P AM QM. (2.1.14)

1<q<2n

The corresponding degree function QAM — R?" will be denoted by deg,, the antisymmetric degree.
Together with the symmetric degree QAM now becomes a bigraded vector space. Therefore we have
for any element a € QAM a decomposition

0= ay, (2.1.15)
pq

where a,, is the unique homogeneous component of a with symmetric degree p and antisymmetric de-
gree q or in other words with bidegree (p, ¢). With respect to the product -, but not o, QAM becomes
a bigraded algebra. Nevertheless (QAM, o) is a graded algebra with respect to the antisymmetric
degree.
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11.2. Deformation quantization 2.1. Fedosov's construction

Next we introduce the o-supercommutator [—, —] on QAM as the unique bilinear map such that
for two elements a,b € QAM being homogeneous with respect to the antisymmetric degree the
equation

[a,b] =aob — (—1)d8aadeabp o (2.1.16)

holds. The supercommutator induces for every a € QAM an adjoint map
ad (a) : QAM — QAM, b— [a,b]. (2.1.17)

Moreover %ad (a) is a well-defined map on QAM and comprises a superderivation of QAM. The
symplectic form w = ¥}, wij dz; ® dx;j can be interpreted as an element of AM ® Q'M. Thus it
gives rise to the inner superderivation

d = ~7 ad (w) (2.1.18)

of QAM. Let us denote for any smooth vector field V' € C*(T'M) and every element f ® a €
AM ® QM the insertion (VLf)®a (resp. f® (VL)) of V in the symmetric (resp. antisymmetric)
part of f®a by Vs (f®a) (resp. V La (f®«)). With this notation we get the following expansion
of § in local coordinates:

h
=— % (w a—(—1Dka w)+
;f (2.1.19)
i () () oo () ()
:; (1®dx;) - <alLa>
Here we have used the local expansion
II :%H“aik@ail (2.1.20)
and the fact that
; Il w <aik’ —) = du;. (2.1.21)
Analogously we can define a second operator §* on QAM by setting locally
5* (a) = zl: (dz;®@1) - (ai:, La a) . (2.1.22)
0*(a) is well-defined, as it can be written in the form
% (a) =e(v®uL)a, (2.1.23)

where e € C*(T'M) is the Euler tensor field which locally is given by e = >, dz; ® 5%1' Note that
0* is not a superderivation of QAM.
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2.1.9 Proposition The operators 6 and §* are homogeneous of symmetric degree —1 (resp. 1) and
antisymmetric degree 1 (resp. —1). Moreover they fulfill the following two relations:

6% = (0%)? =0, (2.1.24)
(66* +0*0)(f®a)=(p+q)(f® ), (2.1.25)

where [ € AM is homogeneous of symmetric degree p and o € QIM .

Proof. The first property follows from the local expressions for § and 0*:

0 0
2 - — D =
1) (f®04)—%: <6xk v axl>Jf®dfﬁk/\dml/\a 0, (2.1.26)
Ff@a) =) (dug v dry) ® 2 Y a=o0 (2.1.27)
%l &ck (%l ! ’

as both sums are symmetric and antisymetric with respect to the indices k,l. The second property is
also a direct consequence of the local expressions for ¢ and §*. O

Denote by 6~ : QAM — QAM the operator
_ 1
OAM 5a =) ay >0 (a) = e 0% apg € QAM. (2.1.28)
pq p+q>0

Then the above proposition entails a kind of Hodge-De Rham decomposition in QAM, namely the

relation
a=196 (a)+ 6 d(a)+ apo- (2.1.29)

for every a € QADM.

In the following the notion of the o-center Z(yoM of QAM will be very useful. It is defined as the
kernel of the family (ad (a))aEQAM and obviously fulfills the equation

Z(yoM =S"M @ QM = {a € QAM : deg a = 0}. (2.1.30)

There are two canonical projections from QAM in Z(yoM, namely

mo0 1 QAM — QAM, a =" ap, — ag (2.1.31)
prq
and
mo: QAM — QAM, a =) ap, — > ag,. (2.1.32)
Pq q
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Connections on the formal Weyl algebra

We now want to give QAM some more differential geometric structure. To achieve this let us choose
a symplectic connection V on M, i.e. a connection V fulfilling Vw = 0. Then V gives rise to a
connection V on QAM by defining

Vif®a)=Vf a+ f®da (2.1.33)

for f € AM and o € QM. Hereby we naturally regard V f as an element of Q'AM. As V is supposed
to be torsionfree, we have da = Va, so V : QAM — QADM is a connection on QAM indeed, i.e. it
fulfills

V(pa) = (1®dy)-a+ ¢ Da (2.1.34)

for every a € QAM and ¢ € C*(M). Moreover, V is a homogeneous superderivation of (QAM, )
with bidegree (0, 1), as the equation

V((f®a)- (9®8)) =V((fVvg)®(anp))
=(Vf-g+f'Vg)-(a/\ﬁ)+(fvg)-(daAﬁ—l—(—l)degao‘aAdB)
= (Vf-a+f®da)- (g®a) + (1) (f®a) (Vg +g®dp)

= (V(f®0a))- (g®8) + (=1)*=* (f®a) - (V(¢ ® B))
(2.1.35)

holds for homogeneous f® «, g® 5 € QAM. With respect to *, the connection V is a homogeneous
superderivation of antisymmetric degree 1 as well. To prove this first recall that VII = 0, hence

V(fxg)=(Vf)xg+ f=(Vg). (2.1.36)
But then
V(f®a)*(g®p)) =V(f*g) (arB)+(f*g9)®@danrB)
(VF)xg+F+(V9) - (@ nB)+(f+9)@ (da n B+ (~1)*a A dB)
(Vf-a+f®da)x(gQa)+ (1) (f®a) * (Vg B+ g®dpB)
= (V(f®a)*(g®8) + (-1)*%=* (f®a) * (V(g ® B))

(2.1.37)
which gives the claim.
2.1.10 Proposition The *-superderivation V fulfills the following relations:
[V,6] = V6 + 6V =0, (2.1.38)
[V,V] =2V? = 2% ad (R), (2.1.39)

where R € ST*M ® Q2M is the contraction R = w_R of the curvature tensor R of V. Furthermore
the contracted curvature R satisfies the relation

VR =6R = 0. (2.1.40)
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11.2. Deformation quantization 2.1. Fedosov's construction

Proof. By Vw = 0 we have

7

A [V7 ad (w)] =

_
h

As V has antisymmetric degree 1, the supercommutator of V with itself is equal to 2V2. But now
we have in local coordinates

W (f®a)=2V(Vf-a+ f@da) =2V?f a
= > (Vo,Va, = Vo,Vo, ) f ®dzy A dus A

rs

= — Z RF,.odx; v (O f)®dxy Adxs A
klrs

[V,6] = (Vw) = 0. (2.1.41)

(2.1.42)

and

2 ad (R) (f @) = 21 (R+ (f ®a) ~ (f@a) » R) =

1 ~
:_§ ( Z Hmklersdml Vv (6k|_f)®d$7«/\d$s/\0£—

klmrs

(2.1.43)
- Z Ik Rklrs (am '—f) vdr @ a A dry A des)

kimrs

= — Z RF,.sdz; v (OkL f)®dx, A dxs A
klrs

which gives the second equation. The relation VR = 0 is nothing else but the first Bianchi identity
for the connection V. Last we have

~ 1
0R = 3 Z Ryjps doy @ dap, A doy A daxg = 0, (2.1.44)
klrs
as Ry, is cyclic with respect to the indices (1,7, s). O

Besides V we will also consider more general connections on QAM, in particular connections D :
QAM — QAM of the form

D=V+ %ad (), (2.1.45)

where 7 is an element of Q'AM, uniquely determined by D up to a central one-form. We call such
a D a Weyl connection and attach to it a now unique one-form ~p fulfilling Eq. (2.1.45) and the

normalization condition
™0 (")/D) =0. (2.1.46)

The two-form ]
Q=R+ Vyp+ %VD £ D (2.1.47)

will then be called the Weyl curvature of D. Furthermore a Weyl connection D will be called abelian,
if its Weyl curvature is a central form or, using the following proposition, if

D? = %ad Q) = 0. (2.1.48)
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11.2. Deformation quantization 2.1. Fedosov's construction

2.1.11 Proposition Let D be a Weyl connection on QAM and Q) its Weyl curvature. Then §2 fulfills
the Bianchi-identity

D=0 (2.1.49)
and the relation ]
D% = %ad (). (2.1.50)
Proof. The Bianchi-identity follows from
DQ =VQ+ L [yp, Q] =
h , . . . (2.1.51)

1 ~

1

1

~ 1
=VR+ VQ’yD + — [Vyp,vp] + 5 [’YD,’YJQJ]-

h
By the Bianchi identity for V the first term vanishes, the last one as vp commutes with 7%. By
Eq. (2.1.39)) the second and the fourth term cancel each other, hence D) = 0. Using Proposition
2.1.10| the second equation follows immediately:

' 1
D?=V2+ L ad (Vp) + =

: +(5) sl

| | (2.1.52)
=%ad (R+V7D+;’YD*’YD>- H

We now will look for Abelian D or in other words for conditions on vp which guarantee D to be
Abelian. To achieve this let us write vp in the form

YD =w+T, (2.1.53)
where r € Q'AM. Then we have
QzR—i—VT—&—%r*r—i—%ad(w)(T)—l@w, (2.1.54)
as wxw =1th1l®w. If now r fulfills
5(r) =R+ Vr+ %r * T, (2.1.55)

then Q = —1 ® w, hence D will be Abelian.

2.1.12 Lemma An element r € Q*AM with degg r > 2 fulfills 6~ = 0 and Eq. if and only
if
r=0"R+6" <V7“+ ;T*T‘) . (2.1.56)

Proof. If the first condition is satisfied, (2.1.56)) follows easily from (676 + d6~)r = r. Let us show
the converse and suppose ([2.1.56)) to be true. Then obviously =7 = 0 by (67)% = 0. Let D be the
Weyl connection on QAM with yp = w +r. To prove ([2.1.55)) it then suffices to show 2 = -1 Q@ w.
We have

0 (+1Qw) =6~ (R+ Vr + %r ¢ 7‘) — 6 dr=r—0dr=900"1r=0, (2.1.57)
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11.2. Deformation quantization 2.1. Fedosov's construction

hence by the Bianchi identity DQ = 0 and D(1 ® w) = 1 ® dw = 0 the relation
I(N+1Rw)=(D+5H(Q+1RQw) (2.1.58)

is true. Using the Hodge-deRham decomposition in QQAM this entails

Q+1Qw=0 (D+6)(Q2+1Qw) =0~ <V+; ad (r)> (Q+1Qw). (2.1.59)

As the operator 0~ (V + % ad (r)) raises the F-degree by 1, we must have 2 + 1 ® w = 0. But this
gives the claim. O
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11.3. Quantum spin systems

3.1. The quasi-local algebra of a spin lattice model

3.1.1 By a Bravais lattice or briefly just a /attice one understands a subgroup A of the additive group

R4 of the form .
A={Z)\iaip\ierori:l,...,d} s

i=1
where (ay,. .., ay) is a basis of R%. We then say that A is the lattice induced by the basis (a1, ... ,aq).
The length d of an inducing basis will be called the dimension of the lattice. Note that the dimension
is uniquely determined by a given lattice but that there might be several bases by which the lattice is
induced. The lattice Z% will be called the standard or cubic lattice in dimension d. It is induced by
the standard basis (e1, ..., eq) of R%.

3.1.2 Let A be a lattice of dimension d, and denote by Pg,(A) the set of all finite subsets of A.
Fix a natural number N > 1 and call % the spin degree of the spin lattice model we are going to
define. For each z € A let H, be the N + 1-dimensional complex Hilbert space C¥N*!. Now put for
Oe fPfin(A)
Ho = ®:Ha:
ze0

and define the local algebra over O as the C*-algebra
Ao = B(Ho) .

Note that due to their finite dimensionality the tensor product of finitely many Hilbert spaces H,
coincides here with their Hilbert tensor product. If O1 and Oy are two finite subsets of A such that
Q1 is a subset of O9, then one has the natural embedding

®0,,0, - Qlol - Qlo2

which, under the natural identification 2y =~ &) B(H,), maps a tensor of the form ®,co, Az with
ze0
Ay € B(Hy) for all z € Op to the simple tensor ®,eco, Ay, where A, is defined to be 15, whenever

x € 02\01. In more abstract terms, o, o, is the unique linear map making the diagram

commute where mg : [ [co Ae = &) co Az is the canonical projection mapping the family (A, )zeco
to ®ze0 Az and @, o, is the map

a01,(92 : H Qliv - ® 9’[1177 (AI)Ieol = (®IE€O1A$) ® (®IEOQ\@1 ]lj“fz) .

€0, €02
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I1.4. Molecular quantum mechanics

4.1. The von Neumann—W,igner no-crossing rule

4.1.1 Theorem (von Neumann & Wigner (1929))) For any positive integer n let
Herm(n) = {A € gl(n,C) | A* = A}

be the space of all (complex) hermitian n x n matrices and
Sym(n) = {Aegl(n,R) | A' = A}

the space of all (real) symmetric n x n matrices. Then $iexm(n) and Gym(n) are real vector space
of dimension n? and % respectively. The subspaces Hermggi(n) < Herm(n) and Symyy(n) <
Sym(n) of hermitian respectively symmetric n x n matrices having at least one degenerate eigenvalue

are (real) algebraic varieties of codimension 3 and 2, respectively.

4.1.2 Remark Recall that an eigenvalue of a real or complex n x n matrix is called degenerate if
its algebraic multiplicity is at least 2. For hermitian or symmetric matrices this is equivalent to the
geometric multiplicity of the eigenvalue being > 2.

Proof. Since the diagonal elements of a hermitian matrix A = (a;;)1<i j<n are all real and a;; = @j;
for i # j, the (real) dimension of fjerm(n) is given as the sum of the number of diagonal elements
of A and twice the number of its upper diagonal elements. So one obtains

n—1
dim Herm(n) = n + 2 Z E=n+(n—1)n=n>.
k=1

In the real symmetric case, one needs to count the number of diagonal or upper diagonal elements,

hence

= 1
dim &ym(n Z nin + ) .

O

The eigenvalues of a complex hermitian or real symmetric matrix A coincide with the zeros of its
characteristic polynomial x4 = det(A — AI,,) € C[A]. Let D(xa) be the discriminant of the charac-
teristic polynomial; see (Cohen| [1993| Sec. 3.3.2) for the definition and properties of the discriminant.
Then D(x4) is a polynomial in the coefficients of x4 and vanishes if and only if x4 has a multiple
root. Since the coefficients of x4 are polynomials in the entries of A, the set of hermitian (respec-
tively symmetric) n x n matrices with a degenerate eigenvalue is a real algebraic variety in HHerm(n)
(respectively Sym(n)).
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11.4. Molecular quantum mechanics 4.1. The von Neumann—Wigner no-crossing rule

Next let us determine the codimension of the variety $ermgg(n). To this end recall that a hermitian
matrix A can be written in the form A = UDU ™!, where D is a diagonal matrix having the eigenvalues
of A as its entries and where U is a complex unitary n x n matrix. The diagonal matrix D =
(dij)1<i,j<n is uniquely determined when one requires that its diagonal entries are linearly ordered so
that d1; < ... < dpp,. The matrix U is uniquely up to a unitary matrix V' commuting with D. In
case A has n different eigenvalues, the only unitary matrices commuting with D are diagonal matrices
with entries from U(1). Since dim U(n) = n? Hence the codimension of $ermggt(n) in Herm(n) is
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I1l1.1. Representations of the Lorentz and
Poincaré groups

1.1. The Lorentz invariant measure on a mass hyperboloid

1.1.1 Consider Minkowski space of space dimension d that is R'*¢ endowed with the Minkowski inner
product

d
Coom i RFEX R SR, (p,g) = %" + (B, ) = 1°¢" - D p'd
i=1
Note that (-, -) stands here for the euclidean inner product, and p is the spacial vector (p',...,p%)

associated to the space-time vector p € R'*?. We sometimes will denote space-time dimension 1 + d
by D. Form > 0 let
H = {peR” [ {p,pym = m* & p’ > 0}

be the positive mass hyperboloid of mass m. Observe that
X" iR > HY p— (E(p),p) with E(p) = /m? +{p,p)
is a global chart of the mass hyperboloid. Its inverse is given by
T HS R p= 00— B =00
Note that E(p) = p° for all pe H,|.

Now let A denote Lebesgue measure on R%. We will show that the pushforward measure ©Q,, =
X (%)\) is a Lorentz invariant measure on H' that is A, = Q,, for all A € SOT(1,d). Note that
we have used here that A leaves H,' invariant.

1.1.2 Lemma For A € SO'(1,d) let U5 denote the map

Ty :RY S RY ps Wa(p) = AT (p) -

Then W is a diffeomorphism and the following holds true:
(i) The map SO'(1,d) — Diff(R%), ¥ : A — W, is a homomorphism that is

Upp, = Up,Wp, forall Ay, Ay € SOT(1,d) .

(i) The jacobian of W is given by

EoW,

quA = |D\I/A‘ =deto DU, = E
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I11.1. Representations of the Lorentz and Poincaré groups 1.1. Lorentz-invariant measure

Proof. ad (i). Let A1, Az € SO'(1,d), p € R% and compute

\Il/h\Il/\Q(p) = Wy, <A2X+<p)) = A1A2X+(p) = \IIAU\Q(p) :

This implies in particular that W, is a diffeomorphism with inverse W, 1.

ad (ii). Assume first that A € SOT(1,d) is a rotation that is A = (§ %) for some R e SO(d). Then
observe that ¥4 = R and compute for p € R?

E(Up) = E(Rp) = \/m2 + (Rp, Rp) = \/m2 + {p,p) = E(p) .

Hence

cosh7 sinh7 0

Next let A be a Lorentz boost in the direction of p' that is let A = (singl‘r cosh T (1)> where 7 € R and

1 denotes the identity matrix over R4~1,

Then compute with Wy ; for i = 1,...,d denoting the i-th component of Wy : R? — R

d . .
, sinh7 - E(p) + cosh7-p! fori=1,
Uailp) = AoE(p) + > Aiyip? =<5 .
44(P) 0E(p) Z; uP {Pl fori=2,...,d,
sinh7-%+cosh7‘ fori=75=1,
. - - - P
8\11471(p) _ sinh 7 ) fori=1andj=2,...,d,
op? 0 fori=2,...,dand j =1,
5,-j fori,j:2,...,d,

and

d
E%(Wp) = sinh?® 7 - E(p) 4 2sinh 7 cosh7 - E(p) - p* + cosh? 7 - (p')? + Z (pi)2 +m? =
=2
= (sinh?7 + 1) - E%(p) + 2sinh 7 cosh 7 - E(p) - p! + (cosh?7 — 1) - (p')? =
= (cosh7 - E(p) + sinh 7 - pl)2 )
This entails the equality

p! _ E(9,p)
E(p) + cosht = Elp)

det (DW¥,(p)) = sinh 7 -

Since SO'(1,d) is generated by the rotations and Lorentz boosts in direction p' and since by@
det (D\IjAlA2 (p)) = det (D\Illh (\IIAQ p)) -det (D\IIAQ(p))

the claim follows. ]

42



I11.1. Representations of the Lorentz and Poincaré groups 1.1. Lorentz-invariant measure

1.1.3 Proposition With notation as above the pushforward measure €, = xi (%/\) is a Lorentz
invariant measure on the positive mass hyperboloid H}, that is

f(Ap)dQm(p) = | f(p) dn(p) (1.1.1)
H Hf,
for all f € L'(H, Q) and A € SO'(1,d).
Proof. By definition of the pushforward measure €2, is the unique Borel measure on H,' such that

for all f € Cepe(H,})

F0) (o) = [ 10C°D) 5 NR) -

The claim follows from this observation since for all A € SO'(1,d) the equality

+
H m

1

1
| FO R aAe) = [ 10 Wap) i) -
1 1
— | O AR g det (DVAG) D) = [ FOCB) M)
holds true by Lemma : O

43



[11.2. Axiomatic quantum field theory a la
Wightman and Garding

2.1. Wightman axioms

2.1.1 The Wightman axioms were first introduced in the paper Wightman & Garding (1964), and then
explained in more detail in the textbooks Jost| (1965) and (Streater & Wightman, 2000, Sec. 3.1).
The latter is still the main reference for the axiomatic treatment of quantum field theory in the spirit
of Wightman and Garding. See also (Schottenloher, 2008, Sec. 8.3) for a more modern formulation
which we follow here.

2.1.2 Definition A Wightman quantum field theory of space-time dimension D = d + 1, d € N+,
consists of the following data:

e the state space of the theory given by the projective space P(JH) associated to a separable
complex Hilbert space X,

e a distinguished state w, = Cuv, € P(H) called the vacuum state together with the choice of a
normalized representing vector v, € H called vacuum vector,

e a unitary representation U : Pl(d + 1) = U(H) of the universal cover
Pl (d+1) = R™ % SO'(1,d)

of the proper orthochronous Poincaré group Pl(d +1) =R % S0 (1, d),
e and finally a family (7)1<j<n, n € N>g, of so-called field operators
7 : §(RT) - £,(H)
which are defined on the Schwartz space of rapidly decreasing functions on R™ and map to the
space of unbounded linear operators on the Hilbert space .
These data are assumed to fulfill the following axioms, the so-called Wightman axioms:

(W1) (Assumptions about the domain and the continuity of the field)
There exists a dense linear subspace D < H containing v, such that D is contained in the
domain of all the operators ®7(f) and their adjoints ®7(f)*, where f € §(R%*1!) and j =
1,...,k. Moreover, the unitary representation U and the operators ®/(f) and ®7(f)* leave
D invariant that is

U(a,AYD c D, dI(f)Dc D, ®I(f)*Dc D
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111.2. Axiomatic quantum field theory a la Wightman and G&rding 2.1. Wightman axioms

for all (a,A) € Pl(l,d), fe8(R¥) and j = 1,...,k. Finally, for every v € D, w € H and
j=1,...,n the maps '
SRT) - C, f = (w,®(f)v)

are tempered distributions.

(W2) (Transformation law of the field)
For all (a, A) € Pl(d +1) and all f e 8(R*1!) the equation

Ula, A& (f)U Z D@ ((a, A) f)

is valid over the domain D, where ¢ : SO'(1,d) — GL(n,C) is a finite dimensional representa-
tion of the universal cover of the proper orthochronous Lorentz group SO'(1,d) and the action
of P(d + 1) on 8(R4*1) is given by

P(d + 1) x $(R™!) — §(R¥1),
((a,4), /) = (a, A)f = (R*! 50> f(A7 (@ — ) €C) |

(W3) (Local commutativity or microscopic causality)
If the support of test functions f, g € S(R¥*1) is space-like separated that is if f(z)g(y) = 0
for all z,y € R¥*! with (x — y,x — y)y = 0, then for all j, k = 1,...,n the relation

[27(f), 2"(9)]- = [#7(f), @ (9)*]- =0
or the relation ' ' '
[®7(f), " (9)]+ = [#(f), ¥ (9)*]+ = 0
holds true over the domain D. Hereby, [S,T]_ denotes the commutator
[S,T]-: D—>H, v— STv—TSv
and [S,T']+ the anti-commutator

[S,T]+: D—->H, v STv+TSv

of two operators S, T € £,(H) which are both assumed to be defined on the domain D and
to leave it invariant.

(W4) (Cyclicity of the vacuum vector)
The linear span of the set of all elements v € H of the form

v=0"(f1) ... & (fm)vo
where me N, 1 <j1,...,5m <n, and fi1,..., fm € S(R¥1), is dense in K.

2.1.3 Remarks (a) The vacuum vector v, being normalized just means that ||v,| = 1. This implies
that the vacuum state w, determines v, only up to a factor z € S = C. The physically measur-
able quantities of the quantum field theory such as expectation values or transition amplitudes
do not depend on that choice.
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111.2. Axiomatic quantum field theory a la Wightman and G&rding 2.2. Fock space

(b) The field operators ®/ are operator valued distributions. This reflects the fact that only the
“smeared” fields ®7(f) can be interpreted physically as observable. The notation ®/(x) for a field
evaluated at a space-time point 2 € R therefore does not make sense, neither mathematically
nor physically. Nevertheless it is often used for reasons of convenience, in particular in the physics
literature. The smeared field ®/(f) then is interpreted, again imprecisely, as the integral

We will avoid the notation of pointwise evaluated fields in the formulation of definitions and
theorems, but occasionally use it as a heuristic.

For example, Axiom [(W3)|can heuristically be interpreted as saying that the (anti-) commutation
relations

[®/ (), @*(y)]5 = [#7 (), ¥/ (y)*]5 = 0

hold true for x,y € R space-like separated which means for the situation when

(& —y,x =y <0.

2.2. Fock space

2.2.1 Recall from Section that the Hilbert tensor product H; ® Hs of two Hilbert spaces H;
and H, is defined as the completion of the the algebraic tensor product H; ® Hy endowed with the
inner product

oy (@ Ha) x (Hy @ Ha) = K, (v1 ® v, w1 ® wa) > (vr,wi) - (v2, wa)

The norm of an element v1 ® vy € H1 @ Hy is then given by |[v; @va| = |v1-|vz|, and every element

v e Hy ® Hy can be written as the sum of a square summable family (Uil ®”i2)ief that is as

v=>Yvn®uiz where [v* =) [vi|? - [via)* < o0 .
el el
If (€i)ier is Hilbert basis for 3(; and (f;);cs one of Hy, the family (e; ® f;)(; j)erx.s is a Hilbert basis
of H; ® Hs. Moreover, the canonical map 7 : H; x Ho — H; @ Ha, (v1,v2) — v1 ® vy is bilinear

and weakly Hilbert—-Schmidt that means that there exists a C' > 0 such that for all Hilbert bases
(€i)ier of 3y, all Hilbert bases (f;);es of Ho, and all w e H; & Hy

D Kres f), wy? < Clw)? .

(,5)elxJ

Note that if this condition holds for one Hilbert basis of {; and one of H», it holds for all. The
Hilbert tensor product, which in the following we will only call tensor product, satisfies the following
universal property.
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111.2. Axiomatic quantum field theory a la Wightman and G&rding 2.2. Fock space

(HTensor) For every Hilbert space 3 and every weakly Hilbert-Schmidt bilinear map p : H; x Ho —
H there exists a unique bounded linear map i : H; ® Ho — H such that the diagram

Hy x Hy —s K

(e

Hy ®Ho
commutes.

For a proof of the universal property see Section or (Kadison & Ringrose| 1997, Sec. 2.6.).
Note that by its universal property the Hilbert tensor product & is a bifunctor on the category Hilb
of Hilbert spaces and bounded maps. Moreover, Hilb equipped with the bifunctor ® becomes a
monoidal category. See Section for details and proofs.

2.2.2 Now let us fix a Hilbert space H and consider the higher Hilbert tensor product powers §"(H) =
H®™ for natural n. These are recursively defined by

HOO_K, HE™ 3@ (HO") .
The Fock space of H now is defined as the Hilbert space direct sum

(90 = PFH) = PHO" .

neN neN

Its elements are families (vy,)nen of vectors v, € H® ™ such that >, |vn|? < o0. The inner product
of two such families v = (V) pen, W = (Wy)nen € F(H) is given, according to 77, by

(v, wy = Z<vn,wn> )

neN

2.2.3 Remark The construction of the Fock space resembles the one of the tensor algebra. Recall
that the tensor algebra of 3 is the vector space T(H) = P T"(H) where T"(H) is defined as the

neN
algebraic tensor product power H®". The completed tensor algebra of 3{ now is the ¢!-completion

—
~

T(H) = 6-P T(H)

neN

where 'T'”(J—C) = F"(H) = HO". The completed tensor algebra lies densely in Fock space. To
verify this observe that, regarded in the category of Banach spaces, Fock space (including its norm)
coincides with the /a-direct sum of the spaces Banach spaces ?”(9{) and :I:(CH) with their ¢;-direct
sum. Since for every summable family v = (v, )en with v, € 'T'”(J-C) the relation

Jvf = Jlvl2 = \/Z lonll <, [ D7 Ivall -, fsuponl < Y fonl = vl
neN neN

neN neN

holds true by Hélders inequality for series, :I:(J-C) is contained in F(H). It is also dense in Fock space
because the (algebraic) direct sum @ T"(H) is already so.

neN
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Unlike Fock space in the case dimH = oo, the completed tensor algebra 'T'(i]-C) always carries a
canonical algebra structure. To define the product of two summable families v = (v,)nen and
w = (wy)nen one puts for all natural n

n
Zn = Z Vi @ Wy_k -
k=0

Then z, € T"(K) for all n € N, and the family z = (2, )nen is absolutely summable again since

N n
>zl = Jim Z Jznll < Jim 200 vkl k] < Jim Z 2 o[ Jwill < fvfx w]y -
n=0 k=0

neN k 01=0

Hence z = (2p,)nen is an element :I:(}C) which we call the product of v and w. It will be denoted by
v ® w. By the preceding estimate we thus obtain a continuous map

®: T(H) x T(H) > T(H), (v,w) —»vQ@w

such that R
[v@w|i < vl |w]i for all v,w e T(H) .
The restriction of ® to the (uncompleted) tensor algebra T(H) = @ T"(H) is associative, so by
neN
density one concludes that ® on T(H) is associative as well. Hence T(X) is a Banach algebra.

Even though F(3() might not possess a compatible Banach algebra structure, it carries the structure
of a T(H) left and right module with the left and right actions being continuous. Let us show this for
the left module structure in some more detail. The right module case is analogous. So assume v =
(Un)nen € T(H), w = (wp)nen € F(H), and let z = (2, )nen Where as before z, = > 3)'_ v ® Wy,
Put wg = 0 for k < 0. Then compute using the triangle and Hélder's inequality

N N || n 2
1213 = tim Yzl = lim Y Y e @was] <
N—o0 N—>x©0
n=0 n=0 | k=0
N N 2
< lim (Z (Hvl~c||1/2 Hwn—k”> |Uk1/2> <
N—w
n=0 \k=0

N N N
< Jim Y (2 o wnkrﬁ) (2 mu) <
N—o0
n=0 \k=0 k=0
N
< lim ol ] <|vk| Z [0y, k2>
N—w© i

=0
N
< 1 2\~ ol w2 |
< Jlim oy ; (lvkl Jwn| ) [vlli w2
Hence z € §(H), and the product ® : :I:( H) has a unique continuous extension to
a left action R
@ : T(H) x F(H) = F(H), (v,w) > vOw
such that

lo@wla < o1 |w]z for all ve T(H), we F(H) .
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111.2. Axiomatic quantum field theory a la Wightman and G&rding 2.3. The free scalar field

2.2.4 Next we will show that associating to a Hilbert space its Fock space can be extended to a
functor on the category Hilb; of Hilbert spaces and linear contractions between them. Recall that
by a linear contraction one understands a bounded linear operator with norm < 1. So assume that
A : Hy — Hy is a contraction between Hilbert spaces H; and Hs. By functoriality of the algebraic
tensor product one obtains for each n € N-( a linear map

A®":9’C(19”—>U{?n, MR..Quy— A1 ®...® Av, .

By Proposition or (Kadison & Ringrose, 1997, Prop. 2.6.12 & Eq. 2.6.(16)) this operator has
norm [|A|™ and extends uniquely to a bounded linear operator §"(A) : F"(H;1) — §"(H2) having
the same norm. Since by assumption |A| < 1, one concludes that |§"(A)| < 1 for all n € N~(. One
further puts §°(A) = idg and observes that then sup, .y [§"(A4)| = 1. Hence, by construction of
the operators §"(A) and definition of the Hilbert direct sum the map

F(A) : F(FH1) — F(H), v = (Vn)nen = (F"(A)(0n))en

is well-defined and a bounded linear operator of norm 1. Note that hereby we have again used the
(silent) agreement that v = (v,,)nen denotes a square-integrable family with v, € F"(%H;) for all
n € N. By construction it is immediate that §(idsc) = idg(g() for every Hilbert space 3 and that for
linear contractions A : H; — Hsy and B : Hy — Hgz between Hilbert spaces the relation

3(BA) = §(B)3(A)

holds true. Hence we obtain as promised a (covariant) functor § from the category Hilb to itself.
One sometimes calls § the functor of second quantization.

2.2.5 Particularly important for quantum field theory is the observation going back to |Cook! (1953
that every closed densely defined linear operator on a Hilbert space has an extension to Fock space
which again is closed and densely defined. Let us explain this in some more detail. We essentially
follow the approach by |Cook| (1953)); see also Emch| (2009).

Let (3()_, be a finite family of Hilbert spaces and (A;)?_; a family of closed densely defined un-
bounded linear operators A; : Dom(A4;) < H; — H;, ¢ = 1,...,n over the same index set. Hence
the adjoint A of A; is a closed densely defined unbounded linear operator on J; for every index
i=1,...,n. Put D; = Dom(A4;) and D} = Dom(A}) and note that then D; and D} are dense in
JH; by assumption and the preceding observation.

2.3. The free scalar field

2.3.1 Here we want to show that a model of the Wightman axioms is given by the free scalar field of
mass m > 0 in space-time dimension D = d + 1 for d € N-g. The Hilbert space H of the free scalar
field is the symmetric Fock space §s (Lz(Hrz, Qm)) over the 1-particle Hilbert space L?(H,}, ) of
square-integrable functions on the positive mass hyperboloid H;? = R” equipped with the lorentz-
invariant measure (2,,, which has been defined in Section [L.1] By definition, €2, coincides with the
pushforward measure x;(5), where X denotes Lebesgue measure on R?, E(p) = /m? + {p, p) for
all pe RY, and x* : R? — H is the chart of the positive mass hyperpoloid which maps p € R? to
(E(p),p) € H,. In this section we will often denote the 1-particle Hilbert space of the free scalar
field by HW.
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111.3. Algebraic quantum field theory a la
Haag—Kastler

3.1. The Haag—Kastler axioms
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A.1. Topological Vector Spaces

A.1.1. Topological division rings and fields

1.1.1 Vector spaces with a compatible topology can not only defined for vector spaces over the ground
fields R and C but also over fields K carrying an absolute value | - | : K — R>(. This endows the
ground field with a topology which will be needed in the definition of a topological vector space. We
therefore give here a brief introduction to topological division rings and fields first.

1.1.2 Definition Let R be a division ring. By an absolute value on R one understands a map
| -| : R — Rxg such that the following axioms hold true.

(VDR1) The function |- | is multiplicative that is

lzy| = |x| |y| forall z,ye R .

(VDR2) The triangle inequality is satisfied which means that

|z +y| <|z|+]y| forallz,ye R .

(VDR3) For all z € R the relation |z| = 0 holds true if and only if z = 0.

A division ring or field endowed with an absolute value is called a valued division ring respectively a
valued field. An absolute value | - | on a division ring R and the corresponding valued division ring
(R,|-|) are called non-archimedean if the strong triangle inequality is satisfied that is if

(VDR4) |z + y| < max{|z|, |y|} for all z,y € R.

Otherwise | - | and (R, | - |) are called archimedean.

1.1.3 Lemma Let (R,|-|) be a valued division ring. Then

i A=t

(i) | — x| = |z| for all z € R, and

(iii)) ||z = lyl| < |z —y| < |2| + |y| for all z,y € R.

Proof. [(i)] holds true since 1] = |12| = |12 and |1| # 0 by 1 # 0. To verify [(ii)| it suffices to show
that | — 1| = 1. But that holds true since | = 1|2 = |(=1)?| = 1 and | — 1| = 0. The last claim follows

by
|z —y| = |2| = (ly — x|+ [z]) < [2| = |yl < |z =yl + |y| = |y| = |z — ¥

and
lz —yl=lz+ (=y)| < |z[+ |-yl =[=] +[y] . 0
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1.1.4 Examples (a) Obviously, the standard absolute values

if x>0
|l : QR - Rxg, 2 — N |x and || :C > R, 27— V2Z
—z ifz<0

are absolute values on the fields Q, R and C, respectively. These absolute values are all archimedean
since |1 4+ 1]|oo = 2 > 1. Unless mentioned differently, we always assume @, R and C to be equipped
with the standard absolute values. If no confusion can arise we usually write | - | instead of | - |.

(b) The standard absolute value on the quaternions

| o :HoRsg, g=a+bi+cj+dk/gg="a2+b2+2+d?,
where a, b, ¢, d are real, is an archimedean absolute value. Usually it is briefly denoted | - |.

(c) For every division ring R the map

:R—R 0 ifx=0,
T R->R 2 —
1 else

is a non-archimedean absolute value. It is called the trivial absolute value on R.

(d) An absolute value | - | : F — R defined on a finite field F has to be trivial. To see this observe
that for each x € K* there exists an n € N such that " = 1. This entails |z|” = 1, hence |z| = 1
for all z € K*. So |- | is trivial.

(e) The field of formal Laurent power series K((X)) over a field K can be equipped with an absolute
value as follows. Choose 0 < € < 1 and define the absolute value |}, ; a,X"| of an element
Dinez an X" € K((X)) as €, where n is the minimal integer such that a,, # 0.

(f) Let p be prime number. For every integer m # 0 let v,(m) be the exponent of p in the prime
factor decomposition of m that is m = p*»("n where n is relatively prime to p. For m € Z and
n € N> one defines the p-adic absolute value of the rational number z = " by

0 ifm=0,
|z, =

p p_yp(m)+yp(n) else .

Note that ]x\p does not depend on the particular representation of x as the quotient of integers m
and n. By definition it is immediately clear that the p-adic absolute value is an absolute value on Q
indeed. It is non-archimedean.

1.1.5 Proposition A valued division ring (R, | -|) is non-archimedean if and only if the image of Z
under the canonical map 7. — R is bounded.

Proof. Assume that (R, |- |) is a non-archimedean valued division ring. Then, [0-1] = [0 = 0
and, under the assumption that |(n — 1) - 1| < 1 for some n € Nog, [n-1] = |[(n—1)-1+ 1| =
max{|(n —1)-1|,1} = 1. Hence by induction and since | — 1| = 1 one obtains that |n - 1| < 1 for all
n € Z, and the image of Z in R is bounded.
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To show the converse assume that the image of Z in R is bounded by some constant C > 0. Then,
for all 2,y € R and n € N5 by the binomial formula and the triangle inequality

];0 <Z> :L,kyn—k

Taking the n-th root gives |z + y| < ((n + 1)C)

[z +y[" = < (n+ 1) Cmax{fz], [y[}" .

Ln max{|z|, |y|} which after passing to the limit

n — o entails |z + y| < max{lz[, |y|} since lim (n + 1)0)1/n = 1. Hence (R,]|-|) is non-
n—

archimedean. 0

1.1.6 Proposition Let | - | be an absolute value on the division ring R. Then for every T > 0 with

7 <1themap|-|”: R — Ry is an absolute value on R as well. It is archimedean if and only if | - |
is archimedean.

Proof. To prove that |- |™ is an absolute value it suffices to show that (a + b)” < a” + b for all
a,b = 0. Without loss of generality we may assume a > b > 0. By dividing through ™ one sees that
the claim is equivalent to (t+1)” <t¢"+1forall ¢ > 1. For t = 1 this is certainly true. The derivative
of the function h : [1,00) > R, t — (t+ 1) —¢™ now is given by #'(t) = 7((t +1)7"! —¢"~1) which
is negative since 7 —1 < 0 and 1 +¢ >t > 1. Hence h is monotone decreasing and (t+1)" —¢" < 1
forall ¢t > 1.

Since (0,00) — R, ¢t — 7 is strictly increasing and unbounded, the image of Z in R is unbounded
with respect to | - | if and only if it is with respect to | - |". O

1.1.7 An absolute value |- | : R — Rx( on a division ring R induces the metric d : R x R — Ry,
(x,y) — |x—y| which then gives rise to a topology on R. This topology has the following properties:

(TDR1) Addition + : R x R — R is continuous.
(TDR2) Multiplication - : R x R — R is continuous.
(

TDR3) Inversion (-)~! : R* — R* is continuous, where R* denotes the set of units in R
i.e. R* = R\{0}.

Proof. Addition is continuous since for all a,b,z,y € R by the triangle inequality
dlz+y,a+b)=|lz+y—(a+b)| <|x—a|l+|y—bl =dx,a)+d(y,b) .

Actually, this even shows that addition is Lipschitz continuous. Now fix a,b € R and let C' =
max{|al, |b|} + 1. Then for all z,y € R with d(y,b) <1

d(z-y,a-b) =[x y—a-y)+(a-y—a b <|z—allyl+ally — b < C(d(z,a) +d(y,b)) .

Hence multiplication is continuous. Finally, fix a € R* and let x € R* with d(z,a) < %‘ Then

|z| = |a| — d(z,a) > |‘21—‘ >0 and

2 d(z,a) .

d (ac_l,a_l) = |m_1 — a_1| = |x_1 'a_1| |z — al < W

= ——d(z,a)
|z[ |al

So inversion is also continuous. O
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1.1.8 Definition A division ring or field R which is equipped with a topology so that[(TDR1)| [[TDR2)
and [(TDR3)| are satisfied is called a topological division ring or a topological field, respectively.

1.1.9 Lemma /f|-| is a non-trivial absolute value on the division ring R, then there exists an element
t € R* such that the sequence (t"),en converges to 0. Furthermore in this case every 0-neighborhood
in R contains infinitely many elements.

Proof. By non-triviality of | - | there exists ¢ € R* such that [t| # 1. By possibly passing to t~! we

can assume |t| < 1. Since then lim |¢|” = 0, the sequence ("),en converges to 0. This implies
n—o0

in particular that for every € > 0 the open ball B(0,¢) = {t € R | |t| < ¢} contains infinitely many
elements. So the lemma is proved. O

1.1.10 Definition Two absolute values |- | and |- |" on a division ring R are called equivalent if they
induce the same topology on R.

1.1.11 Theorem Let |- | and | - | be two absolute values on the division ring R. Then they are
equivalent if and only if there exists e > 0 such that | - |" = | -|". In particular the trivial absolute
value is the only one inducing the discrete topology on R.

Proof. Let us first show the following proposition.

(A) If |- | and | - |" are equivalent, then the relation |z| < 1 holds true for x € R* if and only if
lz|" < 1.
. -1 _ 1 _1/ _ 1 . . . .
Since |z7!| = =l and |27 = Ed for all z € R™, implies that |z| > 1 if and only if |z|' > 1

and that |z| = 1 if and only if |z|" = 1. To verify claim assume now that 0 < |z| < 1. Then
lirrolo |z™| = 0, hence (2™),en converges to 0. By assumption, lim |z™|" = 0 then holds as well which
n— n—0o0

implies that || < 1. By switching |- | and | |’ the converse holds true, so[(A)]is proved.

Next we show that | - | is trivial if and only if the induced topology on R is discrete. Namely, if | - | is

non-trivial, then there exists x € R such that |z| # 1. After possibly passing to 2 we can achieve

that || < 1. So lim |z"| = 0, which means that (z"),ey is a sequence of non-zero elements of
n—00

R converging to 0. But this implies that the singleton {0} is not open in the topology induced by
| -], hence this topology is non-discrete. Since obviously the trivial absolute value induces the discrete
topology on R the second claim of the theorem is proved.

|” for some 7 > 0. Then a subset B — R is a metric open ball with
|" since for x € R and £ > 0

Now assume that |- | = |-
respect to | - | if and only if it is one with respect to | -

{yeR|ly—a|<e}={yeR||ly—a| <c"} and
{y€R||y—$|'<a—:}={yeR||y—x|<el/T}.

Hence the open sets with respect to the metric defined by |- | coincide with those defined by | -|" and
the two absolute values are equivalent.

Let us finally show the other direction and assume that | - | and | - | are equivalent. By the already
proven second claim of the theorem we can restrict to the case where the induced topology is non-
discrete which means to the case where both |- | and | - |" are non-trivial. We show that there exists
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7 > 0 such that |z|" = |z|” for all x € R* with |z| > 1. This is sufficient, since if |z| = 1, then
|z =1 = |z|” for any o > 0 by[(A)} and since if z € R* with |z| < 1 then |z~!| > 1 and

ap o L 1
N

= || .
The existence of a 7 > 0 with the claimed property is equivalent to the function

R* - R, o 202l

In |z|

being constant. Assume that that is not the case. Then there exist z,y € R* with |z|, |y| > 1 such

’ !/ ’ !/
that 11?1“9;" # 111:1”32". By possibly switching = and y we can assume 111”9;" < % But that implies
!
EE", < }Em since the logarithms are positive by assumptions on x and y and |(A) Hence there exists

a rational number g with p, g € N+ such that

In|z|" p Inlz

Inly" ¢ Infyl’

Then |29]" < |yP|" and |yP| < |2?| which entails

/

24 q
—|l <land |—|>1.
yP yP

This contradicts and the theorem is proved. O

1.1.12 Remarks (a) By Ostrowski's theorem (Ostrowski, (1916, p. 276), see also (Gouvéa, (1997,
Thm. 3.1.3), every non-trivial absolute value on the field Q of rational numbers is either equivalent
to the standard absolute value | - |, or to a p-adic absolute value | - |, for some prime number p.
Observe that for different primes p and ¢ the absolute values | - |, and | - |; are not equivalent.

(b) Another theorem of Ostrowski (Ostrowski, 1916, p. 284), sometimes called big Ostrowski's theo-
rem, tells that for every archimedean valued field (K, | - |) there exists an embedding ¢ : K — C into
the field of complex numbers with its standard absolute value and a positive real number 7 < 1 such
that

|z| = |u(x)]l, forallzeK.

In particular this means that every complete archimedean valued field is isomorphic to either (R, |-|7,)
or (C,|-|7,) for some positive 7 < 1.

(c) The p-adic absolute values on @ have extensions to R by (Lang, 2002, XII, §4, Thm. 4.1).
This is a highly non-obvious result. To prove it one has to check first that | - |, can be extended
to an absolute value | - | on the field k of real numbers algebraic over Q. This extended absolute
value is, and that turns out to be crucial, again non-archimedean. Now one observes that | - |
can be extended to the polynomial ring k[X]| by the GauB norm |p(X)| = maxo<i<n{ai} where
p(X) = ap X" + ... + a1 X + ap € k[ X]. The GauR norm obviously extends to an absolute value
on the fraction field k(X). Again, this extension is non-archimedean. Now one recalls that R is a
purely transcendental field extension of k and uses a transfinite induction type argument involving the
just constructed Gaull norm to extend | - | from K to R. The thus obtained extension of the p-adic
absolute value to R is not unique. In its construction, the axiom of choice is used, so one can not
even give an explicit formula for such an extension.
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A.1.2. The category of topological vector spaces

Vector space topologies

1.2.1 Definition Let R be a topological division ring. A topology T on a vector space E over R is
called a vector space topology if the following axioms hold true:

(TVS1) Addition + : E x E — E is continuous.
(TVS2) Multiplication by scalars - : R x E — E is continuous.

The topology T on E is called translation invariant if for every w € E the linear map 4, : E — E,
v +— v + w is a homeomorphism.

A vector space E endowed with a vector space topology on it is called a topological vector space
(over R), for short a tvs

1.2.2 Remark Let us recall at this point some notation from linear algebra. Assume that V is a left
vector space over the divison ring R. If A, B < V are two non-empty subsets, then A + B is the
set of all v € V for which there exist x € A and y € B such that v = 2 + y. If A or B is empty,
then A + B is defined as the empty set. In case A is a singleton that is if A = {x}, then we often
write = + B instead of {z} + B. If B < P(V) is a non-empty set of subsets of V, then we denote by
A+ B and x + B the sets {A+ Be P(V) | Be B} and {z + B € P(V) | B € B}, respectively. If
A < P(V) is a second non-empty set of subsets of V, then A + B stands for the set of all sets of the
form A + B, where A€ A and B € B.

In case C is a subset of the ground ring R, then C - A is defined as the set of all v € V for which
there exist r € C' and z € A such that v = r-z. If r € R we write - A for {r}- A. Likewise, if z € V,
C' -z stands for C'- {x}. Analogously as for addition the sets C- A, C'- A and C- A are defined when
€ c P(R) and A < P(V) are non-empty.

1.2.3 Proposition Let E be a tvs over a topological division ring R. Then the following holds true:

(i) For every r € R* and w € E the homothety {,,, : E — E, v — rv 4+ w is a homeomorphism
with inverse {1 _,.-1,,.

(i) Let w be an element of E and r € R*. A filter base B on E then is a filter base for the zero
neighborhoods if and only if w + rB is a filter base for the neighborhoods of w.

(iii) If B is a filter base of the filter of zero neighborhoods, then the closure of any non-empty A c E
is given by ~
A=(1A+U.

(iv) Let A c E be open and B c E. Then the set A+ B is open.

(v) Let A, B c E be closed and assume that A is quasi-compact that is that any filter on A has a
cluster point. Then the set A + B is closed.

(vi) The space E is 77 or, equivalently, each point of E possesses a neighborhood base consisting of
closed subsets.
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Proof. ad (i). The homothety ¢, ,, is continuous since addition and multiplication by a scalar are
continuous maps on a tvs Since for all v e V

1

b1 14y 0 r (V) r~ v+ w) —rw = v, and
1 1

braw 0 byt _poryy(v) = 7(r v —1r W) +w =

the homothety ..., is invertible, and its inverse is £,—1 _,—1,,.

ad (ii). This follows since ¢, ,, is a homeomorphism.

ad (iii). Let B = () A+ U. Let v be an element of the closure of A. Then, for U € B, there
Ue

B
exists an element a € Anwv — U by and since —U is a zero neighborhood. Hence v € a + U,
and A c B follows. Now let v € B and V be a neighborhood of v. Then there exists U € B such
that v — U < V. By definition of B there exists an element a € A such that v € a + U. Hence
a€v—U c V which implies that v e A. So B c A.

ad (iv). The set A+ B is either empty or coincides with the union | J .5 v + A. In the latter case,
each of the sets v + A is non-empty and open by continuity of addition. So A + B is open under the
assumptions made.

ad (v). We can assume that A and B are non-empty because the claim is trivial otherwise. Assume
that A+ B is not closed. Then there exists an element v € E\(A + B) such that each neighborhood
of v meets A + B. This means in particular that the restriction of the neighborhood filter U of v
to A+ B is a filter base. Consequently, (—B + U) n A is a filter base on A, hence possesses an
accummulation point z € A. For each neighborhood V' € U the point x is then contained in the
closure of —B + V. Hence, by x is contained in v — B + U + U for every zero neighborhood
U. Since by continuity of addition U + U runs through a base of zero neighborhoods when U runs
through the zero neighborhoods, z € v — B = v — B follows. Since z € A this contradicts the
assumption v € A + B and A + B has to be closed.

ad (vi). Let v e E, A c E closed, and assume v ¢ A. Choose an open neighborhood V' of v such
that V. n A = (. Then there exists an open zero neighborhood U such that v+ U + U < V. By
possibly passing to U n (—U) we can assume that U = —U. Now v + U is an open neighborhood of
v and A + U one of A. These neighborhoods are disjoint because if the intersection v + U n A + U
is non-empty, then there exists an element w € v + U + U n A since —U = U. This contradicts
VnA=, sov+Uand A+ U are disjoint neighborhoods of v and A, respectively. Hence E
satisfies 77. O

1.2.4 Corollary Every vector space topology on a vector space over a topological division ring is
translation invariant.

Proof. This follows immediately by Proposition [1.2.3)[(i)] O

1.2.5 Definition A subset C' of a vector space E over a valued division ring (R, | - |) is called
(i) symmetric if —v e C for all ve C,

(ii) circled or balanced if rv e C for all v e C and r € R with |r| < 1.
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1.2.6 Remark Symmetry of a subset of a vector space of a division ring is even defined when the
underlying division ring does not carry an absolute value.

1.2.7 Lemma Let C be a subset of a topological vector space E over a valued division ring (R, |- |)
and r € R.

(i) IfC is symmetric, then the closure C' and the interior C are symmetric.
(i) If C is circled, then the closure C and the union C''U {0} are circled.

(iii) The set rC' is symmetric (respectively circled) if C' has that property.

Proof. Without loss of generality we can assume C # . Claim [(i)] then follows immediately since
multiplication by —1 is a homeomorphism. To prove claim|(ii)|assume that C'is circled. Let s € R with
|s| < 1. Assume v € C and consider sv. We have to show that sv € C. If s = 0thensv =0e C < C
since C is circled. So we can assume s # 0 and need to show that for every neighborhood V' of
sv the intersection C' NV is non-empty. Since |s| > 0, the homothety /s : E > E, w — sw is a
homeomorphism with inverse £,—1. Hence s~!V is a neighborhood of v. Since v lies in the closure of
C there exists an element w e C' n sV, Hence sw e C NV by assumption on C and C'is circled.

If v e CU{0}then0=0-veCu{0} Itremains to show that sv € C' U {0} for s € R with
0 < |s| <1 and v € C\{0}. Under this assumption the homothety £, is a homeomorphism, so sC is
an open subset of C since C is circled. Hence sv e sC < C, and C' U {0} is circled as well.

Claim follows immediately from the observation that for v € C' and s € R the relation srv € rC
holds true if sv e C. O

1.2.8 Proposition and Definition The intersection of a non-empty family (C;)ie; of symmetric
(respectively circled) subsets C; — E, i € I of a topological vector space E over a valued division ring
(R,|-|) is symmetric (respectively circled). In particular, if A c E is a subset, then the sets

Sym A = ﬂ B and CircA = ﬂ B
AcBcCE AcBcCE
B is symmetric B is circled

are symmetric and circled, respectively. They have the property that Sym A is the smallest symmetric
and Circ A the smallest circled subsets of E containing A. They are called the symmetric and the
circled hull of A, respectively. Analogously,

Sym A = ﬂ B and CircA = ﬂ B
AcB=BcE AcB=BcE
B is symmetric B is circled

are called the closed symmetric and the closed circled hull of A, respectively. They have the property
that Sym A is the smallest closed symmetric and Circ A the smallest closed circled subset of E
containing A.

Proof. Note first that all the hulls in the proposition are well-defined since E is closed and circled.
Let C' denote the intersection of the family (C;);c;. Assume that for some r € R with |r| < 1 the
inclusion 7C; = C holds true for all i € I. Then rC' < C, hence if all C; are symmetric (respectively
circled), so is C. This observation now entails that Sym A is symmetric, Circ is circled, Sym A is
closed and symmetric, and finally that Circ A is closed and circled. Moreover, all those sets contain
A. The minimality properties of these sets are clear by construction. O
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1.2.9 Remark Observe that by the proposition A is symmetric if and only if Sym A = A and circled
if and only if CircA = A. Analogously, SymA = A if and only if A is closed symmetric and
Circ A = A if and only if A is closed and circled.

1.2.10 Lemma Let E be a topological vector space over the valued division ring (R,|-|) and A c E

non-empty. Then
SymA=Au—-A and CircA = U rA .

reR, |r|<1

For the closed hulls one has

SymA =SymA and CircA = Circ A .

Proof. Since A U —A is symmetric by definition, contains A, and is contained in Sym A, the equality
SymA = A U —A holds true. Similarly, UTE& ‘T|<1TA is circled by definition, contains A, and is
contained in Circ A by definition of the circled hull. Hence Circ A = UTGR Ir|<1 rA. The remainder
of the claim follows from Lemma [1.2.7] O

1.2.11 Definition Assume that B, C are subsets of a vector space E over the valued division ring
(R,|-|). Then one says that

(i) C absorbes B if there exists a real number ¢t € R>( such that B c rC for all r € R with |r| > ¢,

(i) C'is absorbing or absorbent if C' absorbes every one-point set of E that is if for every v € E
there exists t € R such that v € rC for all r € R with |r| > t.

If the vector space E carries in addition a vector space topology, then one says that

(iii) the subset B — E is bounded if it is absorbed by every zero neighborhood.

1.2.12 Lemma Let E be a vector space over the valued division ring (R,| - |). Then the following
holds true.

(i) IfCh,...,C, are absorbing subset of E, then the intersection C1 n ...~ C,, is absorbing.

(i) If C is an absorbing subset of E, then rC' is absorbing for every r € R*.

Proof. ad (i). Let v € E and choose t1,...,t, € R such that v € rC; for |r| = t;. Putt =
max{ty,...,tp}. Thenver(Cy n...nCy) for |r| = t, hence C; n ... C, is absorbing.

ad (ii). Choose t € R> such that v € sC for all s € R with |s| > ¢. Then one has |sr| > ¢ for all
s € R with |s| > ﬁ hence v € s(rC) for all such s. Therefore rC' is absorbing. O

1.2.13 Proposition The filter of zero neighborhoods of a topological vector space E over (R,| - |)
has a filter base B with the following properties:

(i) For eachV € B there exists U € B such that U + U c V.
(i) Every element V' € B is circled and absorbing.

(iii) There exists an element 7 € R* with 0 < |r| < 1 such that V € B implies rV € B.
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Conversely, if B is a filter base on an R-vector space E such that (i) to hold true, then there
exists a unique vector space topology on E such that B is a neighborhood base at the origin. In case
the ground ring R is archimedean, a filter base on E which satisfies [(i)| and already induces a
unique vector space topology having B as a neighborhood base at 0. In either of these two cases, the
thus constructed topology coincides with the coarsest translation invariant topology for which B is a
set of zero neighborhoods.

Proof. Assume that E is a tvs Let B be the set of circled neighborhoods of 0. We show first that
B is a base of the filter Uy of zero neighborhoods. Let W € Uy. By Axiom |(TVS2)| there exists
an € > 0 and an open zero neighborhood U such that sU < W for all s € R with |s| < . Then

V= U sU is a zero neighborhood since by Lemma [1.1.9] the set of s € R* with |s| < ¢ is

seRX & |s|<e
non-empty. By construction V is contained in W and circled, so V' € B. Hence B is a filter base of
Up.

Next recall that there exists r € R* with 0 < |r| < 1 since the absolute value | - | is non-trivial. Let
V e B. Then sV < V for all s € R with |s| < 1 which entails srV < rV for all such s. Hence rV is
circled and an element of B as well. This proves . Since addition on E is continuous, there exist
for given V € B open neighborhoods Uy, Uy of the origin such that Uy + Uy < V. Choose U € B
such that U < Uy n Us. Then U + U < V and|[(i)]is proved. To show that any V € B is absorbing
let v € E. By continuity of scalar multiplication there exists € > 0 such that sv € V for all s € R with
|s| < e. By Proposition [1.2.3)[(i)] this entails v € sV for all s € R with |s| > ¢ and V is absorbing.

Now assume that E is an R-vector space and that B is a filter base that satisfies [(i)] and, if
| - | is non-archimedean, . Since B consists of non-empty circled sets, 0 € V for all V' € B. Let
T < P(E) be the set of all U  E such that for each v € U there exists V € B with v+ V < U. By
definition and since B is a filter base, T is a topology on E. By construction, T is also the coarsest
translation invariant topology for which B is a set of zero neighborhoods. We show that B is a base
of the filter Uy of zero neighborhoods. By definition of T there exists for each U € Uy a V € B such
that V < U. So it remains to show that each V' € B is a zero neighborhood. To this end let U be the
set of all v € V' for which there exists a W e B with v + W < V. Since 0+ V < V one has 0 € U.
The relation U < V holds because 0 € W for all W € B. Now let v € U. Byl@there exists W’ such
that v + W’ + W’ < V which entails v + W’ < U. Hence U € T and V is a zero neighborhood.
Next we verify that T is a vector space topology. We start with continuity of addition. Let W be an
open neighborhood of v + w, where v,w € E. Then there exists V € B such that v + w +V < W.
Choose U € B such that U + U < V. Then v + U and w + U are neighborhoods of v and w,
respectively, and (v+U)+ (w+U) c v+w+V < W. So addition is continuous. We continue with
scalar multiplication. Let W be an open neighborhood of rv, where r € R and v € E. Then there
exists V' € B such that rv + V + V < W. Since V is absorbing by there exists ¢ > 0 such that
(s —r)veV for all se R with |s —r| <e. Now if |- | is non-archimedean choose t € R* according
to ((iii)} and put V;, = t"V for all n € N. In the archimedean case let ¢ = § and use |(i)| to construct
recursively a sequence (V,)nen of elements of B such that 2"V, = V,, + ... + V,, € V, where the
sum has 2" summands. In either of these cases, choose N € N large enough so that [tV < \7“|1+6'
Then Viy € B and v + Vi is a neighborhood of v. Moreover, for w € v + Vjy there exists an element
x €V such that w — v = tNx. Then the relation s(w — v) = stz € V holds whenever |s — | < ¢
since Vyy is circled. Hence for such w and s

sw=rv+s(w—v)+(s—rjverv+V+VcW.
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This means that scalar multiplication is continuous, and the proof is finished. O

Morphisms of topological vector spaces

1.2.14 Definition By a morphism of topological vector spaces over the topological division ring R
one understands a continuous R-linear map f : E — F between two topological vector spaces E
and F over R. The space of morphisms between E and F will be denoted Homp 1vs(E, F) or just
Hompg(E,F) or Hom(E, F) if now confusion can arrise.

1.2.15 Theorem The topological vector spaces over a topological division ring R as objects together
with their morphisms form an additive category which we denote by R-TVS. More precisely, R-TVS
is a category enriched over the category of R-vector spaces where addition and scalar multiplication
on the hom-spaces Hom(E, F) are given by

+: Hom(E, F) x Hom(E, F) — Hom(E,F), (f,g) — f +9 = (E>v > f(u) + g(t) € F) |
-: R x Hom(E,F) - Hom(E,F), (r,f)—»r-f=(E>sv—r-f(v)eF) .

Proof. Observe first that the identity map idg on a topological vector space E is linear and continuous
and so is the composition g o f of two morphisms of topological vector spaces f : E — F and
g : F — G. Hence topological vector spaces over R together with linear and continuous maps
between them form a category.

Next check that the hom-space Hom(E, F) is an abelian group. Associativity and commutativity of
addition follow from the respective properties on F. The zero element is the constant map E — F,
v — 0 and the inverse of a morphism f: E — Fis given by —f : E > F, v — — f(v). Similarly one
checks that multiplication by scalars on Hom(E, F) is associative and distributes from the left and
from the right over addition since scalar multiplication on F has these properties. Finally, the unit of
R acts as identity on Hom(E, F') since it does so on F. Hence Hom(E, F) carries the structure of an
R left vector space.

Composition of morphisms Hom(E, F) x Hom(F, G) — Hom(E, G), (f,g9) — g o f is an R-bilinear
map as the following equalities for f, f1, fo € Hom(E, F), ¢g,91,92 € Hom(F,G), r € R, and v € E
show:

(folgr+g2)w) = f((g1+g2)(v)) = f(g1(v) + g2(v)) =
=fogqi(v) + foga(v) =(fog + foga)(v),

(fo(rg))(v) = f((rg)(v)) = f(rg(v)) =rf(g(v)) = (r(fog))(v) ,

(fi+ f2)og9)(v) = (f1 + f2)(9(v)) = fi(g(v)) + fa(g(v)) =
—flog()+f209() (fiocg+ faog)(v),

((rf)og)(v) = (rf)(g(v)) =r(f(g(v))) =r(fog()) = (r(fog))(v).

Hence R-TVS is a category enriched over the category of R-vector spaces. In particular, R-TVS then
is an additive category. O

1.2.16 Example For every tvs E and non-zero element t of the ground ring R the map ¢; : E — E,
v — to is an isomorphism of topological vector spaces by Proposition [1.2.3][(7)|
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1.2.17 Proposition and Definition A linear map f : E — F between topological vector spaces
over a valued division ring (R, | -|) maps symmetric sets to symmetric sets and circled sets to circled
sets. If in addition f is continuous, then f is bounded that means it maps bounded subsets of E to
bounded subsets of F.

Proof. Since by linearity f(tv) = tf(v) for all v € E and t € R, f(C) is symmetric (respectively
circled) if the subset C' c E is.

To verify the second claim let B — E be bounded and V' < F a zero neighborhood. Then f=1(V) is
a zero neighborhood in E by continuity of f. Hence there exists an r € R> such that B < tf~(V)
for all t € R with |t| = r. By linearity of f one obtains f(B) < tV for all such ¢, so f is bounded.[]

1.2.18 Remark By the proposition continuity of a linear map between topological vector spaces
implies the map to be bounded. As we will see later in this monograph, the converse does in general
not hold true unless the underlying topological vector spaces are for example normable.

Normed real division algebras and local convexity

1.2.19 The major class of topological divison rings over which topological vector spaces are defined
is formed by valued division rings (R, | - |) which carry the structure of an R-algebra such that for all
r € R and z € R the equality

rzf = [rle - |2|

holds true. We will therefore given them a particular name and call them normed real division algebras.
Note that the field of real numbers can be embedded into a normed real division algebra R by the
natural map R — R, r — 7 - 1. Since R with its standard absolute value is archimedean, so is every
normed real division algebra. By the Frobenius theorem, |Frobenius| (1878), there exist only three finite
dimensional real division algebras, namely the field of real numbers R, the field of complex numbers
C, and the quaternions H.

1.2.20 Definition Under the assumption that R is a normed real division algebra one calls a subset
C c E of an R-vector space

(i) convex if tv + (1 —t)w e C for all v,w e C and t € R with 0 < ¢ <1,
(ii) absolutely convex if rv + sw € C for all v,w € C and r, s € R such that |r| + |s] < 1,

(iii) a cone if tve C forallve C and t € R with 0 <t < 1.

1.2.21 Lemma Let R be a normed real division algebra. A subset C' of an R-vector space E then is
absolutely convex if and only if it is circled and convex.

Proof. The claim is trivial when C' = (7, so we assume that C' is nonempty.

Let C' be absolutely convex. Since C' contains at least one element v one has 0 =0-v+0-v e C.
Hence rv = (1 —|r])-0+rv e C for all v e C and r € R with |r| < 1. So C is circled. By definition
of absolute convexity C' is convex.

If C is circled and convex, then it contains with elements v, w also rv + sw if |r| + |s| < 1. To see
this observe first that gv € C and ow € C where the elements p,0 € R have been chosen so that
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lo| =lo| =1, r=|r|-0and s = |s|- 0. Now if |r| + |s| = 0, then rv + sw = 0 € C since C'is
circled. If |r| + |s| > 0, then

rv+sw=(|r|+|s|)< ||i|| |QU+| ||i| |aw>eC’
r| + s r s

since C' is convex and circled. Hence C' is absolutely convex. O

1.2.22 Lemma A linear map f : E — F between vector spaces over a normed real divison algebra
R maps convex sets to convex sets, absolutely convex sets to absolutely convex sets, and cones to
cones.

Proof. This an immediate consequence of the linearity of f. O

1.2.23 Lemma Let E be a tvs over a normed real division algebra R, let C, D — E be convex and
r € R. Then the following holds true.

(i) The closure C' and the interior C' are convex.

(i) The sets C' + D and rC are convex.
(iii) If C is absolutely convex, then so are C and C.
(iv) If C is absolutely convex, then so is rC for each r € R*.

Proof. We consider only the cases C, D # ¢ because otherwise the claim is trivial.

ad (i). Let t € (0,1). Then tC + (1 — t)C < C by continuity of the map E x E — E, (v,w)
tv+ (1 —t)w. Hence C is convex. Now let v,w be points of the interior of C' and z = tv + (1 —t)w.
Then z € C, and there exists a zero neighborhood U such that v + U < C' and w + U < C. Let
u € U and compute

zHu=tv+ (1 —-tw+tu+ (1 —thu=tlv+u)+ (1 —t)(w+u) .

Since both v + u and w + u are elements of C so is z + u by convexity of C. Hence z + U < C and
z lies in the interior of C.

ad (ii). fv,we C, z,y€ D and t € (0, 1), then by convexity of C' and D
tv+z)+(1-t)(w+y) = (tv+(1—thw) + (tz+(1—-t)y)eC+D.
Hence C + D is convex. Similarly,
t(rv) + (1 —t)(rw) =r(tv + (1 — t)yw) e rC
so rC' is convex as well.

ad (iii). Let C be absolutely convex. If C' # &, then 0 € 3C — 1C < C, hence 0 € C. By

Lemma and [(i)| the claim now follows.

ad (iv). By rC' is convex, so it remains to show that rC' is circled. Assume that v € rC. Then
v = rw for a unique w € C. Since C is circled, tw € C for every t € R with |[¢| < 1. Hence
tv = r(tw) € rC for such ¢ and rC is circled. O
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1.2.24 Proposition and Definition The intersection of a non-empty family (C;)ier of convex (re-
spectively absolutely convex) subsets C; — E, i € I of a topological vector space E over a normed
real division algebra R is convex (respectively absolutely convex). In particular, if A — E is a subset,
then the sets

Conv A = ﬂ B and AConv A = ﬂ B
AcBcE AcBcE
B is convex B is absolutely convex

are convex and absolutely convex, respectively. The set Conv A is called the convex hull of A and
is the smallest convex set containing A. Similarly, AConv A is the smallest absolutely convex set
containing A. It is called the absolutely convex hull of A. The closed convex hull Conv A and the
closed absolutely convex hull AConv A of A are defined by

Conv A = ﬂ B and AConv A = ﬂ B.
AcB=BcE AcB=BcE
B is convex B is absolutely convex

These sets have the property that Conv A is the smallest closed convex subset and AConv A the
smallest closed absolutely convex subset of E containing A.

Proof. Let C be the intersection (] C; and assume that each C; is absolutely convex. Let v,w € C

el
and r,s € R with |r| + |s| < 1. Then v,w € C;, hence rv + sw € C; for all i € I. Therefore
rv 4+ sw € C and C' is absolutely convex. This argument also shows that C is convex if all C; are
convex. The rest of the claim follows as in the proof of Proposition and Definition [1.2.8] O

1.2.25 Remark The proposition in particular entails that A is convex if and only if Conv A = A and
absolutely convex if and only if AConv A = A. Analogously, Conv A = A if and only if A is closed
and convex, and AConv A = A if and only if A is closed and absolutely convex.

1.2.26 Lemma Let A < E be a non-empty subset of a tvs E over a normed real division algebra R.
Then

k k

Conv A = {thi eE | kZEN>0, V1,...Vk EA, t1..., 1% ERZO, Zti = 1} R (A121)
i=1 =1
k k

AConv A = {2 r;v; € E ‘ keNog, v1,... v, €A, r1...,7;, € R, Z Iri| < 1} ) (A.1.2.2)
i=1 i=1

For the closed hulls one has

ConvA =ConvA and AConvA = AConv A .

Finally, if A is circled, then
AConvA =Conv A .

Proof. By definition, the right hand side of Eq. ((A.1.2.1)) is convex and contains A, hence it contains
Conv A. Conversely, one shows by induction on k € N5y and convexity of Conv A that each element
of the form Zle t;v; with v, ..., v € A and t1,...,tr € Ry such that Zle t; = 1is in Conv A.

This proves Eq. (A.1.2.1). The proof of Eq. (A.1.2.2)) is similar. Observe that the right hand side
of Eq. (A.1.2.2) is absolutely convex and contains A. Hence it contains AConv A. An argument
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using induction on k € N-( and absolute convexity of AConv A shows that each element of the form
Zle r;viwithvy,...vp € Aandry ..., 7, € Rsuchthat Zle |ri] < 1isin Conv A. So Eq.
holds true as well. The claim about the closed hulls is a consequence of Lemma([1.2.23] For the proof
of the last claim it suffices to show that Conv A is circled if A is. To this end let v € Conv A and

r € R with |r| < 1. Then one can write v in the form v = Zle tiv; with v1,..., v, € A and
t1,...,tx € R>g, where Zle t; = 1. Hence rv = Zle ti(rv;), which is in Conv A, since rv; € A
for all 7 because A is circled. O

1.2.27 Lemma Let A c E be a non-empty subset of a tvs E over a normed real division algebra R.

(i) IfAis convex and ty,... t; € Ro with k € Nog, then
k k
ZtiA: <th) A.
i=1 i=1

(i) If A is absolutely convex and ry,...,r, € R with k € N>, then

k
riA = <Z w) A.
1 i=1

Proof. ad (i). Obviously ¥  #;4 > (Zle ti> A. Let us show the converse inclusion. Without loss

k

7

of generality we can assume that ¢; > 0 for all i. Then ¢t = Zle t; > 0, so, after division by t, we
can reduce the claim to showing that ZI.C:I t;,Ac Aforty,..., t; € Rog such that Zle t; = 1. But

Zle t;A c ConvA = A by Lemma [1.2.26| and convexity of A.
ad (ii). Since by absolute convexity ;A = |r;|A for i = 1,...,k, the claim follows from [(i)| O

1.2.28 Lemma Let K be one of the division rings C or H with their standard absolute values and
let E be a vector space over K. Then a convex subset C — E is absorbent in E if and only if it is
absorbent in the realification ER.

Proof. It suffices to show the non-trivial direction. So assume that C is convex and absorbent in the
realification ERF. Denote by uy, ..., u, the standard basis of K over R with n = 2 or n = 4 depending
on K. In particular this means u; = 1. For given v € E there now exists ¢t € R>( such that

1
+—v,...,x—verC forallr>=t.
Ul Un

Without loss of generality we can assume ¢t > 1. Let z € K with |z| > nt. Then the vectors

€] = sgn zlwiulv, ce.,Cp = SEN zn‘zﬁv are elements of C. By convexity of C' and since 0 € C' one
n
has %cl, ce %Cn e C. Again by convexity one concludes
1 z
Loy ok ce
z = |2|2 u; ~ n|z|
Hence C is absorbing and the claim is proved. O
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1.2.29 Definition A topological vector space E over a normed real division algebra R for which
Axiom [LCVS| below holds true is called a locally convex topological vector space, a locally convex
vector space or shortly a locally convex tvs.

(LCVS) The vector space topology on E has a base consisting of convex sets.

1.2.30 Remark For better readability, we often say locally convex topology instead of locally convex
vector space topology.

1.2.31 Proposition The locally convex topological vector spaces over a normed real division algebra
R together with the continuous linear maps between them form a full subcategory of the category
R-TVS of topological R-vector spaces. It is denoted R-LCVS.

Proof. This is clear by definition. O

1.2.32 Proposition and Definition The filter of zero neighborhoods of a locally convex topological
vector space E over a normed real divison algebra R has a filter base B with the following properties:

(i) For eachV € B there exists U € B such that U + U c V.
(i) Every element of B is a barrel that means is absolutely convex, closed and absorbing.
(iii) Letr e R*. ThenV € B if and only if rV € B.

Conversely, if B is a filter base on an R-vector space E such that|(i)] holds true and such that each
element of B is absolutely convex and absorbing, then there exists a unique locally convex topology on
E such that B is a neighborhood base of the origin. It is the coarsest among all translation invariant
topologies for which B is a set of zero neighborhoods and is called the locally convex topology
generated or induced by B.

Proof. Let E be a locally convex tvs. Let B be the collection of all barrels which are at the same
time zero neighborhoods. Let V' be an element of Uy, the filter of zero neighborhoods. Since E is
(T3) by Proposition there exists a closed zero neighborhood V, such that V, = V. By local
convexity of E there exists a convex zero neighborhood Vj, with Vj, = V,,. By Proposition [1.2.13]there
exists a circled zero neighborhood V. with V. V. The closed convex hull U = Conv V, then is a
barrel contained in V. Since it is a zero neighborhood it is an element of B, and B is a filter base of

Ug. This proves

To verify @ let V' € B and observe that by continuity of addition there exist zero neighborhoods U
and Us such that U1 + U < V. Choose U € B suchthat U c Uy nUs. Then U +U < V.

Claim holds true since multiplication by an element r € R* is a homeomorphism which preserves
circled and convex sets.

The remaining claim follows immediately from Proposition [1.2.13] and the observation that a real
division algebra is archimedean. O

1.2.33 Corollary Let 8 be a non-empty set of absolutely convex and absorbent subsets of a vector
space E over a normed real divison algebra R. Then the set

B:{r M BeP®) |TFePus) 5+0 & reRX}
BeF
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consists of absolutely convex and absorbent subsets of V and is a base of the filter of zero neighbor-
hoods of a locally convex topology T on E uniquely determined by that property. This topology is the
coarsest among all vector space topologies for which § is a set of zero neighborhoods. The topology
T is called the locally convex topology generated or induced by 8.

Proof. The intersection of finitely many absolutely convex and absorbing sets is non-empty and again

absolutely convex and absorbing by Lemma [1.2.12[(i)] and Proposition and Definition [1.2.24] By
Lemma [1.2.12)[(ii)] and Lemma [1.2.23} the scalar multiple of an absolutely convex and absorbing set

again has these properties whenever the scalar is invertible. Hence each element of B is absolutely
convex and absorbing. Given two elements C, D € B there exist non-empty F,G € P, (8) and
r,s € R* such that C = r (| B and D = s (| B. Without loss of generality one can assume

BeF Be§
that 7| < |s|. Then A=r (| BeBand A=Cnrs D c Cn D since D is balanced and
BeFu§

lrs71| < 1. Hence B is a filter base consisting of absolutely convex and absorbent sets. Moreover,
%C’—l— %C c C for every C € B by absolut convexity. By Proposition the filter base B therefore
generates a unique locally convex topology T for which B is a base of the filter of zero neighborhoods.
Moreover, T is the coarsest translation invariant topology so that B is a set of zero neighborhoods.
This implies in particular that 8 is a set of zero neighborhoods for 7. Now let T’ be a vector topology
such that each element of 8 is a zero neighborhood. Then finite intersections of elements of § are
zero neighborhoods with respect to 77 and therefore also all elements of B. Since T is translation
invariant one concludes that T is coarser than T’ and the claim is proved. O

A.1.3. Seminorms and gauge functionals

1.3.1 Throughout the rest of this chapter the symbol K will always stand for the field of real numbers
R, the field of complex numbers C or the division algebra of quaternions H. We assume these division
algebras to be equipped with their standard absolute values | -|. Moreover, vector spaces are assumed
to be defined over the ground field K unless mentioned differently and are always assumed to be left
vector spaces.

Seminorms and induced vector space topologies

1.3.2 Definition By a seminorm on a vector space E one understands a map p : E — R with the
following properties:

(NO) The map p is positive that is p(v) > 0 for all v € E.

(N1) The map p is absolutely homogeneous that means

p(rv) = |r|p(v) forallveE and re K.

(N2) The map p is subadditive or in other words satisfies the triangle inequality

p(v + w) < p(v) + p(w) for all v,w e E.
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A seminorm is called a norm if in addition the following axiom is satisfied:
(N3) For all v € E the relation p(v) = 0 holds true if and only if v = 0.

A vector space E equipped with a norm || - | : E — Ry is called a normed vector space.

1.3.3 Let us introduce some useful further properties a map p : E — R can have. One calls such a
map p

(1) positively homogeneous if p(tv) = t p(v) for all t € Rog and all v € E,

(2) sublinear if p(tv 4+ sw) < tp(v) + sp(w) for all t,s € R>p and all v, w € E, and

(3) convex if p(tv + sw) < tp(v) + sp(w) for all t,s € Rxp with t + s =1 and all v,w € E.
1.3.4 Lemma For a real-valued map p : E — R on a vector space E the following are equivalent:
(i) p is sublinear.

(ii) p is positively homogeneous and convex.

(iii) p is positively homogeneous and subadditive.

Proof. Let p be sublinear. Then p is subadditive by definition. Subadditivity implies p(0) < p(0) +
p(0), hence p(0) = 0. By sublinearity

p(0)=p(0-0+0-0)<0-p(0)+0-p(0)=0,

so p(0) = 0. We show that p is positively homogeneous. Applying sublinearity again one checks for
ve E and t > 0 that

p(tv) = p(tv +0-0) < tp(v) +0-p(0) = tp(v) ,

so p is positively homogeneous and the implication|[(i)] == [(iii)|follows. If p is positively homogeneous
and subadditive, then for v,w € E and ¢, > 0 with t + s = 1

p(tv + sw) < p(tv) + p(sw) < tp(v) + sp(w),

so p is convex. This gives the implication = [(i)] If p is positively homogeneous and convex,
then one computes for v, w € E and ¢,5s > 0 with t + s > 0

U+
t+ s t+ s

ploo -+ sw) = (04-5)p w) < (04 8) (o) + 2pl)) = (o) + sp(w)

t+s t+s
Since p(0) = %i\I‘I(l]p(tO) = }i\ll%tp(O) = 0 by positive homogeneity, p then has to be sublinear and one
obtains the implication = [(i)} O

1.3.5 Lemma Let p: E — R be a real-valued map defined on a vector space E over K.
(i) Ifp:E — R is positively homogeneous, then p(0) = 0.
(i) Ifp:E — R is subadditive, then p(0) = 0 and for all v,w € E

Ip(v) — p(w)| < max{p(v — w),p(w —v)} .

69



A.1. Topological Vector Spaces A.1.3. Seminorms and gauge functionals

(ii) Ifp: E — R is convex, then the sets B, . := {ve E | p(v) < e} and B, := {ve E | p(v) < &}
are convex for all ¢ > 0.

(iv) If p is sublinear, then B, . and B, . are convex and absorbent for all ¢ > 0.
Proof. ad (i). As already ob d, p(0) = li t0) = lim¢p(0) = 0.

roof. ad (i). As already observed, p(0) t{ifép( ) N p(0)
ad (ii). Note that by subadditivity

p(0) < p(0) +p(0),  p(v) = p(w) < p(v—w), and p(w) —p(v) < pw—v) .
This entails |(ii)
ad (iii). Let v,we {veE|p(v) <e} and 0 <t < 1. Then, by convexity of p,

p(tv+ (1 —t)w) < tp(v) + (1 — t)p(w) <te + (1 —t)e =¢ .
Hence tv + (1 — t)w € {v € E | p(v) < €}. The proof for {v € E | p(v) < €} is analogous.

ad (iv). Convexity of the sets B, . and B, . holds by (i)l Moreover, B, . B, . by definition. Hence
it suffices by Lemma to show that B, . is absorbent in the realification E®. Since p is positively
homogenous by Lemma and 0 < p(v) + p(—v) for all v € E, one concludes that for all t € R
andveE

[p(t0)] < [t/ max{p(v), p(~v)}

and B, . is absorbent in EX. O

Hence tv € Bp,{-: if0<t< max{p(v)gp(—v)}""l,

1.3.6 Definition If p : E — R is a seminorm on a vector space E, we denote for every v € E and
e > 0 by B, . (v) the (open) e-ball associated with p and with center v that is the set

Bpe(v) = {weE|p(w—v) <e}.
The closed e-ball associated with p and with center v is defined as
Bpe(v) ={weE|pw—v) <e}.

The positive number ¢ is called the radius of the ball. In case the center of the ball is the origin, we
often write B, . and By, - for B, -(0) and B, -(0), respectively. If in addition the radius equals 1, then
we usually write only B, and B, and call these sets the open respectively the closed unit ball. More
generally, for the particular radius 1 we denote the corresponding balls by B,(v) and B, (v) and call
them the open respectively closed unit balls with center v. When by the context it is clear which
seminorm p a ball is associated with we often do not mention p explicitely. This is in particular the
case when the underlying vector space is a normed vector space.

If P is a finite set or a finite family of seminorms on E we define the open and closed e-multiballs
with center v by
Bpe(v) = {we E| p(w—v) < ¢ for all pe P}

and
Bp.(v) = {weE |p(w—v) <sfora||peP} ,

respectively. As before, we abbreviate Bp. = Bp.(0) and Bp. = Bp.(0).
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1.3.7 Remark For convenience, we will also use the symbols B),. and B, . to denote the sets {v €
E ! p(v) < 5} and {v eE ’ p(v) < 5}, respectively, when p : E — R is just a real-valued convex map
on the vector space E. Note that for such a p the set {v eE | p(v) < O} might be non-empty. But
as we have shown in Lemma the sets B,, . and B, . associated to a convex p share with the the
balls associated to a seminorm several nice properties like convexity.

1.3.8 Proposition Let E be a K-vector space, and P a finite set of seminorms on E. Then, for
every e > 0 and v € E, the e-multiballs Bp.(v) and Bp.(v) are convex. The e-multiballs Bp. and
Bp. centered at the origin are absolutely convex and absorbent.

Proof. Axiom |(N1)| immediately entails that Bp. and Bp. are circled. Axiom |(N2)| together with
(N1)|entails that the sets Bp.(v) and Bp.(v) are convex. Namely, if wy,ws € Bp(v) and ¢ € [0, 1],
then one has for all seminorms p € P

p(twr + (1 —twy —v) <tp(wr —v) + (1 —t)p(we —v) <te+ (1l —t)e=¢

and likewise p (tw; + (1 — t)wy — v) < € for all wy,we € Bp.(v) and p € P.

Now let v € E and € > 0 be given. Put ¢, = pOI+L o every p € P and tg = max{t, | p € P}. Then

€

one has for all t € K with |t| > ¢y and for all pe P

hence v € tBp.. So Bp, is absorbing. Since Bp. contains the absorbing set Bp,, it is absorbing as
well. O

1.3.9 Proposition and Definition Assume to be given a set () of seminorms on a vector space E.
Let P5in(Q) be the collection of all finite subsets of (). A base of a topology on E then is given by

B = {Bp’s(v) | Pe {Pﬁn(Q), v E E, g > 0} .

The topology T generated by B is called the topology generated, induced or defined by Q. Moreover,
T is a locally convex vector space topology on E. It coincides with the coarsest translation invariant
topology on E such that each seminorm in () is continuous.

Proof. Consider the set By of all multiballs Bp. with P € P,(Q) and € > 0 centered at the origin.
Clearly, By is a filter base since for Pi, P, € P,(Q) and e1,e2 > 0 the multiball Bp, | p, min{e, 0}
is contained in Bp, ., N Bp,.,. Moreover it consists of absolutely convex and absorbing sets by

Proposition

By a similar argument one shows that B is base of a topology. Let Bp, ., (v1),Bp,c,(v2) € B and
v € Bp, ¢, (v1) " Bp, e, (v2). Let € be the minium of the numbers e — pi(v —v1) and g2 — pa(v —
va), where py runs through the elements of P, and py through the ones of P,. Then £ > 0 and
Bp,up,c(v) € Bp, o (vi) "Bp, e, (v2), and B is a base for a topology T indeed. By construction, B
then is a base for the filter of zero neighborhoods and each element of By is open in T. Moreover,
each closed multiball Bp.(v) is closed in T since the complement E\Bp(v) contains with w also the
open multiball Bps(w), where § = min{p(v —w) —€|p € P}.
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We now prove continuity of addition with respect to T. Let v1,v2 € E, P € P;,(Q), and £ > 0.
Since the triangle inequality holds for every seminorm in F', one has

Bp:(v1) + Bpg(v2) © Bpe(vi +v2)

which entails continuity of addition at each (v1,v2) € E x E. Next consider multiplication by scalars
and let A e Kand v € E. Againlet P = {p1,...,pn} € Pin(Q) and € > 0. Let C; = sup{p;(v) | 1 <
j<np+1 Co=|[A+1and put §; = min{l, 75} and 0> = 5. Then one obtains by absolute
homogeneity and subadditivity of each seminorm

pi(pw — M) < |plpj(w —v) + |p— Al pj(v) forall pe Kand wekE,
hence
Bs, (A) -Bps,(v) € Bpe(A-v),

where Bs, (\) = {u € K | | — A| < d1}. This shows continuity of scalar multiplication at each
(A, v) e K x E, and T is a vector space topology.

Since each of the base elements Bp. € By is convex, Axiom holds true as well and the topology
T is locally convex.

Every seminorm p € Q is continuous with respect to the topology 7 since for all a < b the preimage
p~1((a,b)) = B,\B,. is open in T. Now let 77 be a translation invariant topology on E for which
every seminorm p € (Q is continuous. In that topology By is a set of zero neighborhoods. As shown
before, every element B € By is absolutely convex, absorbing and satisfies %B + %B c B. Hence by
Proposition and Definition [1.2.32] the topology T” is finer than the locally convex topology generated
by Bg. But the latter topology coincides with T by construction. This shows the last part of the
claim and the proof is finished. O

Gauge functionals and induced seminorms

1.3.10 As we have seen, any vector space with a topology defined by a family of seminorms on it
is a locally convex topological vector space. The converse also holds true. The fundamental notion
needed for the proof of this is the following.

1.3.11 Definition Let E be a vector space and A c E absorbent. Then the map
pa:E—>Rep, v—pa(v) zinf{teR>0 ‘ vetA}
is called the gauge functional, the Minkowski functional or the Minkowski gauge of A.

1.3.12 Remark By definition of an absorbent set, {t € R~ | v € tA} is non-empty whenever A c E
is absorbent. Hence p4 is well-defined for such A.

1.3.13 Proposition The Minkowski gauge ps : E — R~ of an absorbent subset A of a vector space
E has the following properties.

(i) The gauge functional is positively homogeneous that is ps(tv) = tpa(v) for all t € R~ and all
vekE.
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(i) If A is convex, then py is subadditive and

B,(v) = U tAc Ac ﬂtA:Ep(v).

O<t<1 1<t

(iii) If A is absolutely convex, then p4 is a seminorm on E.

Proof. If t > 0, then tv € sA for some s > 0 if and only if v € $A. Hence {s e Rog | tv € SA} and
t{s € Roq | v € sA} coincide for all t > 0, so foIIows.

Assume that A is convex. Let v,w € E and € > 0. Then there exist ¢t > p4(v) and s > pa(w) such
that v € tA, w e sA, t < pa(v) + 5 and s < pa(w) + 5. By convexity of A and Lemma [1.2.27}
v+wetA+sA=(t+s)A. Hence pa(v+w) < (t+s) < pa(v) + pa(w) + . Since € > 0 was
arbitrary, pa(v + w) < pa(v) + pa(w) and p4 is subadditive. If v € tA for some ¢t with 0 < ¢ < 1,
then pa(v) <t < 1 by definition. Conversely, if pa(v) < 1, then there exists a t > 0 such that ¢ < 1
and v € tA. Hence the equality B,(v) = [y, tA follows. Since A is absorbing, 0 is an element
of A. By convexity of A one therefore concludes tA = (1 —¢){0} +tA < A whenever 0 < ¢ < 1.
For ¢t > 1 this shows %A c A, hence A c tA. So the relation | J,_,; tA < A < [),_,tA is proved.
Now assume that v € tA for all ¢ > 1. Then pa(v) < 1 by definition. If conversely ps(v) < 1, then
there exists for each ¢ > 0 an s > 0 such that pa(v) < s,vesdand s <1+e. Hence, fort > 1+¢

by Lemma[1.2.27]and 0 € A4,
veEsSA=sA+ (t—s){0} csA+(t—s)A=1tA.

Since € > 0 was arbitrary, v € tA for all ¢ > 1 follows. So one obtains the equality (),_,;tA = B,(v),
and [(it)] is proved.

To verify recall that A is circled whenever A is absolutely convex. This entails for r € K, v € E
and absolutely convex A

pa(rv) =inf {t e Rog | rv € tA} = inf {t € Rog | [r|v € tA} = pa(|r|v) = |r|pa(v) |
where for the last equality we have used [(i)]| O

1.3.14 Lemma Let A and B be absorbent subsets of a vector space E. Then the following holds
true.

(i) pia(v) = pa(t—tv) for allt e K* and v € E.
(i) fBc A, thenps < pp.

(i) If A is convex, then v e tA for allve E andt > pa(v).
(

iv) If A and B are convex, then the intersection A n B is absorbent and convex and ps~p =
sup{pa,pp}, where sup{pa,pp}(v) = sup{pa(v),pp(v)} for all v € E.

Proof. ad (i). If t € K is invertible, then v € tA if and only if t~1v € A.

ad (ii). Let v e E and € > 0. Then there exists ¢t with pp(v) <t < pp(v) + € such that v € tB. By
B < A this implies v € tA, hence ps(v) <t < pp(v) + €. Since € > 0 was arbitrary, the estimate
pa < pp follows.
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ad (iii). By definition of the Minkowski gauge there exists s € R such that p4(v) < s < t and
v € sA. By convexity of A one concludes v = jv + (1 — %) -0 € sA, hence v € tA.

ad (iv). The intersection of convex sets is convex, so A n B is convex. Let v € E and choose
rqa = 0 and rg = 0 such that v € tA for all t > r4 and v € sB for all s > rg. Then v €
(tA)n(tB) = t(AnB) forall t = max{ra,rp}, so AnBis absorbent. One has pa~p = sup{pa, pp}
by [(i)] To show the converse inequality assume that v € E and t > sup{pa(v),pg(v)}. Then
vetAntB = t(An B), which implies pa~p(v) < t. Hence pa~p(v) < sup{pa(v),pn(v)} since
t > sup{pa(v),pp(v)} was arbitrary. O

1.3.15 Lemma Let p: E — R be a sublinear map on a vector space E and A — E convex. If
B,c Ac Ep ,
then the gauge functional p4 coincides with sup{p,0}. If p is even a seminorm, then p = p4.

Proof. Let p : E — R be sublinear. Observe that then B, is absorbent by Lemma [Giv)l
Hence A must also be absorbent by assumption, so the associated Minkowski gauge p4 is positively

homogeneous by Proposition [1.3.13][(7)]

Assume now that there exists v € E such that max{p(v),0} < pa(v). By positive homogeneity of
p and p4 one can achive by possibly multiplying v by a positive real number that max{p(v),0} <
1 < pa(z). The first inequality entails v € B, the second v ¢ B, which is a contradiction. Next
assume that there exists v € E with ps(v) < max{p(v),0}. As before one can then achieve that
pa(v) < 1 < max{p(v),0} for some v € E. By the first inequality one concludes v € A, by the
second v ¢ A. This is a contradiction. So the equality max{p(v),0} = pa(v) holds for all v € E.

In case p is a seminorm, then p(v) = 0 for all v € E and the second claim follows by the first. O

1.3.16 Proposition Let E be a topological vector space, and p : E — R be sublinear. Then the
following are equivalent.

(i) The map p is continuous in the origin.
(i) The map p is uniformly continuous.
(iii) The map p is continuous.

(iv) The unit ball B,, is a zero neighborhood.

Proof. Let us first show [(i)] = To this end fix ¢ > 0. By assumption there exists a zero
neighborhood V' < E such that |p(v)| < € for all v € V. By possibly passing to V' n (—V') one can

assume that V' is symmetric. Lemma now implies
Ip(v) — p(w)| <e forallv,weV .

Hence p is uniformly continuous. The implications — and — are trivial. It

remains to prove — [(i)} Assume that B,(0,1) is a zero neighborhood. Then there exists a
symmetric zero neighborhood V' contained in B,,(0,1). Since p(0) = 0 one concludes by Lemma [1.3.5]

@)

Ip(v)| < max{p(v),p(—v)} <1 forallveV .

But this implies |p(v)| < e for all v € €V and £ > 0, so p is continuous at the origin. O
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Normability

1.3.17 Definition A topological vector space E is called seminormable if its topology is generated
by a single seminorm p : E — R>(. If the topology on E coincides with the vector space topology
generated by a norm | - ||, then one calls E normable.

1.3.18 Theorem (Kolmogorov’'s normability criterion) A topological vector space E is normable
if and only if it is a 7?7 space and possesses a bounded convex neighborhood of the origin.

A.1.4. Function spaces and their topologies

1.4.1 Proposition Let X be a topological space and (Y, d) a metric space. Then the following holds
true.

(i) The space
BX,Y)={f:X—>Y |IpeYIC>0VzeX: d(f(z),y) <C}
of bounded functions from X toY is a metric space with metric

0:B(X,Y) x B(X,Y) > Rxo, (f,9) — sggd(f(:c),g(x)) .

(i) If(Y,d) is complete, then (B(X,Y), o) is so, too.

(iii) The space
Co(X,Y) = C(X,Y) n B(X,Y)

of continuous bounded functions from X to Y is a closed subspace of B(X,Y).

Proof. Note first that by the triangle inequality there exists for every f € B(X,Y) and y € Y a real
number Cy, > 0 such that
d(f(x),y) <Cfyp forallze X .

ad (i). Before verifying the axioms of a metric for o we need to show that o is well-defined meaning
that sup,e y d(f(:v),g(a:)) < oo forall f,ge€ B(X,Y). To this end fix some y € Y and observe using
the triangle inequality that

d(f(x),g9(x)) < d(f(x),y) +d(y,g(x)) < Cpy+Cyy forallze X .

Since furthermore d(f(x),g(z)) = 0 for all z € X, the map o is well-defined indeed with image in
Rxo. If o(f,g) = 0, then d(f(z),g(x)) = 0 for all z € X, hence f = g. Obviously, o is symmetric
since d is symmetric. Finally, let f, g, h € B(X,Y) and check using the triangle inequality for d:

o(f.9) = sup d(f(z),9(z)) < sup (d(f(x), h(x)) + d(h(z),9(x))) <

< supd(f(x), h(x)) + sup d(h(z), g(x)) = d(f.h) + d(h. g) .

Hence ¢ is a metric.
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ad (ii). Assume (Y, d) to be complete and let (fy,)nen be a Cauchy sequence in B(X,Y). Lete >0
and choose N, € N so that
O(fns fm) <e foralln,m =N .

Then for every x € X the relation
d(fn(2), frm(z)) <& forall n,m > N, (A.1.4.1)

holds true, so (f(z))nen is a Cauchy sequence in Y. By completeness of (Y, d) it has a limit which
we denote by f(x). By passing to the limit m — oo in (A.1.4.1)) one obtains that

d(f(z), fa(z)) <e forallze X andn> N, . (A.1.4.2)
Using the triangle inequality one infers from this for an element y € Y which we now fix that
d(f(x),y)) < d(f(@), fni (2)) + d(fn (2),9) ST+ Cry,y -
Hence f is a bounded function. Moreover, entails that
o(f, fn) = su)gd(f(x),fn(a:)) <e foralln>= N, ,
ze

sO (fn)nen converges to f.

ad (iii). We have to show that the limit f of a sequence (fy,)ne of functions f,, € C,(X,Y) which
converges in (B(X,Y), o) has to be continuous. To this end let € > 0 and choose N; € N so that

o(fn, f) < % foralln > N, .
Let xg € X. By continuity of fx_ there exists a neighborhood U < X of z so that

forall z e U .

d(fn.(x), fa.(2z0)) <

Wl M

By the triangle inequality one concludes that

d(f(z), f(z0)) < d(f(x), fn. () + d(fn. (), f. (20)) + d(fn. (w0), f(z0)) <&

for all z € U. Hence f is continuous at . Since xg € X was arbitrary f, is a continuous map, hence
an elemnt of C,(X,Y).

O

1.4.2 Proposition Let X be a topological space and K the division algebra of real or complex
numbers or of quaternions. Then the following holds true.

(i) The space B(X,K) of bounded K-valued functions on X can be expressed as
BX,K)={f: X >K|3IC>0Vzre X : |f(z)|<C}. (A.1.4.3)

It carries the structure of a K-algebra by pointwise addition and multiplication of functions and
becomes a Banach algebra when equipped with the supremums-norm

I oo s B(X,K) - K, stgglf(ﬂf)\ :
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(i) The subspace C,(X,K) < B(X,K) of bounded continuous K-valued functions on X is a closed
subalgebra of (B(X,K), | |lw), so a Banach algebra as well when endowed with the supremums-
norm. For X compact this means in particular that the algebra (€(X,K),| - ) is a Banach
algebra.

Proof. Eq. (A.1.4.3) is obvious since the distance of two elements a, b € K is given by d(a, b) = |a—b|,
so in particular d(a,0) = |a|. Let f,g € B(X,K) and choose C¢,C, = 0 so that |f(z)| < C} and
lg(z)] < Cy for all z € X. Then, by the triangle inequality and absolute homogeneity of the absolute
value,

@) + 9@ < Cr+Cyy laf@)] <lalCp. and |f(@)-g(a)| < C;-C .

Hence the sum and the product of two bounded functions are bounded and so is any scalar multiple
of a bounded function. Therefore, B(X,K) is an algebra over K. Using the triangle inequality
and absolute homogeneity of the absolute value again one verifies that | f|« is a norm on B(X,K)
indeed and that it fulfills | fg]o < ||flleo - 9] for all f,g € B(X,K). Furthermore, by definition,
[floo = o(f,0) for all fe B(X,K), where g is defined as in Proposition Since (B(X,K), o) is
a complete metric space, (B(X,K), | -|lo) therefore is a Banach algebra. This proves the first claim.

For the second observe that for f,g € C,(X,K) and a € K the sum f + g, the scalar multiple af,
and the product f - g are elements of C,(X,K) again. To verify this let z € X and £ > 0. Choose
neighborhoods Uy and Us of x so that

) - f@)] < min{s :

g
f U
2’|a|+1’2<|g<w>|+1>} ryem

and

€ €
@) <1, —= b toryeus,.
o) 90 < {15 5| e e
Then for all y € Uy n Uy

(f+9)(y) — (f+9)(@)] < |f(y) — f@)]+|9(y) —g(z)] <€,
[(af)(y) — (af)(@)| < la| - |f(y) — f(z)| <&,
I(f-9)y) = (f-9) @) <[g)|-1fy) = f@)]+|f(@)] [(g(y) —g(@)] <e.

This means that f + g, af and fg are continuous in x, hence elements of Cp (X, K) since x € X was
arbitrary. So C,(X,K) is a subalgebra of B(X,K). By Proposition one knows that C, (X, K)
is a closed subspace of B(X,K). The rest of the claim is obvious. O

S

1.4.3 As the next step, we introduce seminorms and their topologies on spaces of differentiable
functions defined over an open set 2 — R™. We agree that from now on Q will always denote in this
section an open subset of R™. For any differentiability order m € N U {o0} the symbol €™ (£2) stands
for the space of m-times continuously differentiable complex valued functions on Q. Fori=1,...,n
we denote by 2 : R® — R the i-th coordinate function and, if m > 1, by ¢; : €™(Q2) — €™~ 1(Q)
the operator which maps f € C"(Q) to the partial derivative ggl More generally, if « € N™ is a
multiindex satisfying |a| = a1 + ..., < m, then we write 0% : €™(Q) — €™~ 12l(Q) for the higher

order partial derivative which maps f € €™ () to %. Recall that the sum and the product
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of two m-times differentiable functions and scalar multiples of m-times differentiable functions are
again m-times differentiable, hence €™ () forms a C-algebra. Now we define C™(f2) to be the space
of continuous functions on the closure Q which are m-times continuosly differentiable on Q so that
each of its partial derivatives of order < m has a continuos extension to €. Since the operators 0;
are linear and also derivations by the Leibniz rule, €™ () is a subalgebra of €™ (). In general, these
algebras do not coincide as for example the function % on R-g shows. It is an element of C*(R~¢)
but can not be extended to a continuous function on R, so is not an element of C*(R~y).

If X < R"™ is locally closed which means that X is the intersection of an open and a closed susbet of
R™, then define C™(X) as the quotient space C™(€2)/Jx (), where Q < R™ open is chosen so that
X = X nQ and where Jx denotes the ideal sheaf of all m-times continuously differentiable functions
vanishing on X that is

9x(9) = {f e €™() | flx =0} .

Using a smooth partition of unity type of argument one shows that C"*(X) does not depend on
the particular choice of the neighborhood €2 in which X is relatively closed and that €"(X) can
be naturally identified with the space of continuous functions on X which have an extension to an
element of C™ ().

1.4.4 Proposition Let Q — R"™ be open and bounded and m € N~q. Then C™(Q) equipped with
the norm -
I lom : €"(Q) = Rzo,  fr—

A.1.5. Summability

1.5.1 Definition Assume to be given a locally convex topological vector space V over the field K
of real or complex numbers. Let (v;);c; be a family of elements of V. Let F(I) be the set of finite
subsets of I and note that it is filtered by set-theoretic inclusion. The family (v;);er then gives rise

to the net (ZiEJ vi>J _— One calls the family (v;)ier summable to an element v € V if the net
€

(Ziej vi> _ converges to v. In other words this means that for every convex zero neighborhood
JeF (I

U < V and € > 0 there exists an element Jy; . € F(I) such that for all finite sets J with Jy. < J < I

pU (U—Zm) <e.
ieJ

As before, pyy denotes here the gauge of U. If V is Hausdorff, the limit v of a summable family (v;);es
is uniquely determined, and one writes in this situation

v :Zvi .
el

We denote the space of summable families in V over the given index set I by ¢}(I,V). For E = C
we just write ¢*(I) instead of /1 (I,C). If in addition the index set coincides with N, we briefly denote
?H(N) by £1.
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1.5.2 Proposition (Cauchy criterion for summability) Let V be a complete locally convex topo-
logical vector space. A family (v;)icr of elements of V then is summable to some v € V if and only
if it satisfies the following Cauchy condition:

(C) For every convex zero neighborhood U — V and € > 0 there exists an element Jy; . € F(I) such
that for all K € F(I) with K n Jy. = & the relation

pu (Z Uz’) <é
ieK

holds true.
Proof. By completeness of V it suffices to verify that the net (ZieJ Ui)J - is a Cauchy net if
€
and only if condition (C) is satisfied. Recall that one calls (ZieJ vi>J _ a Cauchy net if for every
€

convex zero neighborhood U < V all ¢ > 0 there exists an element Jy. € F(I) such that for all
J,J' € F(I) containing Jy . as a subset the relation

pU (sz’— Zm) <e
ieJ ieJ’
holds true. But that is clearly equivalent to condition (C). O

1.5.3 Several other notions of summability have been introduced in the analysis and functional analysis
literature. These are mainly either used to establish summability criteria or are used in the study of
topological tensor products and nuclearity of locally convex topological vector spaces, see|Grothendieck
(1955); |Pietsch| (1972). In the following we define these further notions of summability and study
their properties. The symbol V hereby always stands for a locally convex tvs, I always denotes a
nonempty index set, and F(I) the set of its finite subsets.

1.5.4 Definition A family (v;)ier in V is called weakly summable to v € V if for every continuous
linear form a : V. — K the net (ZZ—EJ a(vi))J _ converges in K to «(v). In other words this
€

means that for every € V' and & > 0 there exists a finite set J, . < I such that for all finite sets .J
with Jo. < J < 1

<e€.

a(v) — Y a(v)

jedJ

The set of all weakly summable families in V with index set I is denoted ¢*[I, V].

1.5.5 Definition A family (v;);er in V is called absolutely summable if for every circled convex zero
neighborhood U < V there exists some C' > 0 such that

Yipu(vi) <C forall JeF(I) .
ieJ

We denote the set of all absolutely summable families in V by ¢1{I,V}.
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1.5.6 Proposition A family (v;)ie; < V is absolutely summable if and only if for every element U
of a basis of circled convex zero neighborhoods there exists a C > 0 such that

Yipu(vi) <C forall Je F(I) .
eJ

Proof.
1.5.7 Definition A family (v;);er in V is called totally summable if there exists a bounded absolutely

convex subset B < V and a C > 0 such that

Yipp(vi) <C forall Je F(I).
e

We write £1(I, V') for the set of all totally summable families in V.

Summable families of complex numbers

1.5.8 Lemma (cf. (Pietsch, 1972, Lem. 1.1.2)) Let (z;);cr be a family of complex numbers for
which there exists a positive real number C > 0 such that

e

ieJ

<C forall JeF(I) .

Then one has the estimate
D1zl <AC forall Je F(I) .
ieJ

Proof. We assume first that all z; are real. Then let IT the set of all indices 7 € I such that z; > 0,
and I~ the set of all ¢ € I such that z; < 0. Then, for all finite J < I

Dlzl= D7 lal+ D) lal=| D) = Doz

i€J ieJnIt ieJnl— ieJnI+ ieJnl—

+ <2C.

In the general case decompose z; into real and imaginary parts x; = Rez; and y; = Jmz;. By the
triangle inequality one obtains for all finite J < I

Z|Zi| < Zml +Z|y¢| <4C .

ieJ e ieJ [

1.5.9 Proposition For a family (z;)c; of complex numbers the following are equivalent.
(i) The family (z;)ier is summable.

(i) The family (|z;|)ier is summable.

(ili) The family (z;)er is absolutely summable.

(

iv) There exists some C > 0 such that ._;|z)| < C for all J € F(I).

80



A.1. Topological Vector Spaces A.1.5. Summability

In case that one hence all of the conditions are fulfilled, the estimate

iel iel

holds true.

Proof. Assume that (z;);cs is absolutely summable. Since C is normed with norm given by the absolut
value this just means that there exists some C' > 0 such that >}, _; |2;| < C for all J € F(I). Hence
the supremum ¢ = sup {>,,.; |zi| | J € F(I)} exists and is < C. For given € > 0 choose J. € F(I)
such that

c—e< Z |zi] < c.

i€Je

Then one has for all K € F(I) with K nJ. =

>

ieK

<2’2i’<8.

eK

Hence (3., zi)Jeg([) is a Cauchy net, so has to converges by completeness of C. This proves
summability of (2;)ser-

Vice versa, assume now that (z;);cs is summable. Then (3, ; zi)Je,JrU) is a Cauchy net. Hence there
exists an element J; € F(I) such that for all K € F(I) with K n J; = J the inequality

>

eK

<1

holds true. Let C'= > ._; |z|. Then one has for all J € F(I)

i€Jq

Zzi <1+C.

ieJ

<ZZ¢+

i€J\J1

> -

ieJnJy

By the preceding lemma the set of partial sums ».._; |z;|, where J runs through the finite subsets of
I, is then bounded by 4 + 4C, hence (z;);es is absolutely summable. O

Summability in Banach spaces
1.5.10 Proposition Let V be a normed vector space. For a family (v;);cr of elements in V the
following are equivalent:
(i) The family (v;);er is absolutely summable.
(ii) The family (|vi|)ier is summable.
(iii) There exists some C' > 0 such that Y ,_; |v;| < C for all J € F(I).

If V is even a Banach space, these conditions are all equivalent to
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(iv) The family (v;)ier is summable.
Proof. and are equivalent by Proposition Assume now that [(i)] holds true. O

to do: Carl Neumann series

Properties of and relations between the various summability types

1.5.11 Theorem Let I be a non-empty index set. Then the spaces £*(I,V) of summable families,
01, V] of weakly summable families, £*{I,V} of absolutely summable families and ¢*{I, V') of totally
summable families in E are all subvector spaces of the product vector space ET = ;c; E. Furthermore
one has the following chain of inclusions:

(NI, VY c M1, VY and (NI, V) c (I, V] .
If E is complete, then one even has
(MI,V} < NI, V)

Proof. Now let (v;) be a summable family and o : V — K a continuous linear form.

Let U be an absolutely convex zero neighborhood. Then U absorbes B, so there exists > 0 such
that B < rU. Hence O

A.1.6. Topological tensor products

1.6.1 Definition (cf. (Grothendieck, 1955, Chap. |, §3, n®3)) Let V and W be two locally con-
vex topological vector spaces over the ground field K. A locally convex vector topology 7 on the
(algebraic) tensor product V®W is called compatible with the tensor product structure, an admissible
tensor product topology or just admissible if the following conditions hold true:

(ATPT1) The canonical map V x W — V ®, W is seperately continuous that is for each v € V and
each w € W the linear maps

WV Wy—v®y and Vo>V W,z—zzQw

are continuous where V ®,; W denotes the vector space V® W equipped with 7.

(ATPT2) For all linear maps a € V' and 3 € W’ the canonical linear map map a®: V®, W —» K
is continuous.

(ATPT3) For every equicontinuous subset A — V' and equicontinuous subset B < W’ the set
{a®p|ae A& B e B} is an equicontinuous subset of the topological dual of V&, W.

The locally convex vector topology 7 is called strongly compatible with the tensor product structure,
a strongly admissible tensor product topology or briefly strongly admissible if it satisfies:
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(sATPT) The canonical map V. x W — V ®; W is continuous where V x W carries the product
topology.

1.6.2 The admissible respectively strongly admissible vector topologies on V. ® W are obviously
partially ordered by set-theoretic inclusion. Therefore, the following definition makes sense.

1.6.3 Definition
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A.2.1. Schwartz distributions

A.2.2. Pullback of distributions

2.2.1 Let M and N be smooth manifolds and f : M — N a smooth map. One then has a continuous
pullback map f* : €*(N) — C*(M) which maps an element h € C*(N) to the composition
hof : M — R which obviously is a smooth function on M. The Faa-di-Bruno formula from
Theorem [8.1.10] tells that f* is continuous indeed. In this section we want to establish criteria under
which the pullback of functions can be extended to a pullback of distributions. We also will study
continuity properties of the distributional pullback operation

Let us start with the following observation.

2.2.2 Lemma Let f : Uy — Us be a diffeomorphism between two open subsets Uy, Uy — R™ and A
the Lebesgue measure on R™. Then for every u € C(Us) and ¢ € D(Uy) the equality

J o ffud\ = J (o f Huldet Df Y dX
Uy Uz

holds true.

Proof. The claim is an immediate consequence of the change-of-variables formula. O

2.2.3 Using the lemma as guideline we now extend the pullback of functions to distributions. Denote
for U ¢ R™ by (:,-) the pairing between D'(U) and D(U). Under the assumptions of the lemma
assume u to be a distribution on Uj that is an element of D’(Us). Then the map

frfu:DU1) >R, ¢ {uldet DY (7)) .
is an element of the distribution space D’(U;) since the map
D(U1) — D(Uz), ¢+ |det Df o f

is linear and continuous with respect to the LF-topologies on D(U;) and D(Us). One calls f*u the
pullback of the distribution v under f. By Lemma [2.2.2] this pullback operation extends the one for
continuous functions and it is obviously uniquely determined by that property.

We continue with another observation.
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2.2.4 Lemma Assume that U < R" isopen, f : U — R a submersion and ¢ € D(U) a test function.
Then the map

d
f*SO:R_)Ra t'_)J
dt Jizeu|f(z)<t)

is well-defined, smooth and has compact support.

o(z)dx

Proof. Let us assume first that the map ¥ : U — R", (z1,...,2y) — () is O

todo Possibly assume that M is orientable and carries a volume form.

A.2.3. Hyperfunctions of a single variable

2.3.1 Let us introduce some notation. For every open intervall I < R call an open subset U < C
such that I = U n R a complex neighborhood of I. Denote by C* the upper complex half-plane
{z € C|Jmz > 0} and by C™ the lower complex half-plane {z € C | Jmz < 0}. More generally, put
Ut =UnC*"and U~ = U n C~ for every open subset U < C.
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A.3.1. Inner product spaces
3.1.1 Let us first remind the reader that as before K stands for the field of real or of complex numbers.
We will keep this notational agreement throughout the whole chapter.

3.1.2 Definition By a sesquilinear form on a K-vector space V one understands a map {-,-) :
V x V — K with the following two properties:

(SF1) The map {(:,-) is conjugate-linear in its first coordinate which means that
vy + v2,w) = (v, wy + {v2,wy and {(rv,w) =T v,w)
for all v,v1,v0,w eV and r e K.
(SF2) The map {-,-) is linear in its second coordinate which means that
vy wy +wa) = v,wr) +{(v,we) and (v, rw) = rlv,w)

for all v, w,wy,we € V and r € K.
A hermitian form is a sesquilinear form {-,-) on V with the following additional property:

(SF3) The map {(:,-) is conjugate-symmetric which means that

(vy,wy ={w,v) forallv,weV.

A sesquilinear form (-, -) is called weakly-nondegenerate if it satisfies axiom
(SF4w) For every v € V, the map V — K, w — (w, v) is the zero map if and only if v = 0.
Finally, one calls a hermitian form {-,-) on V positive semidefinite if

(SF5s) (v,v) =0 for all ve V.

3.1.3 Remark Recall that a map (,-) : V. x V — K is called bilinear if it satisfies and the
following condition:

(BF1) The map {:,-) is linear in its first coordinate which means that
(vp + v2,w) = (v, wy + (va,wy and {rv,w)y =r{v,w)

for all v, v1,v9,w e V and r € K.
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In case the underlying ground field K coincides with the field of real numbers, a sesquilinear form is
by definition the same as a bilinear form, and a hermitian form the same as a symmetric bilinear form.

3.1.4 Given a positive semidefinite hermitian form {-,-) on a K-vector space V, one calls two
vectors v, w € V orthogonal if {v,w) = 0. Since the hermitian form {,-) is assumed to be positive

semidefinite, the map
1V = Reo, v v = /{0, 0)

is well-defined. We will later see that | - || is a seminorm on V and therefore call the map | - || the
seminorm associated to {-,-). The following formulas are immediate consequences of the properties
defining a positive semidefinite hermitian form and the definition of the associated seminorm:

v + w|? = |v]* + 2Re (v, w) + |w|* for all v,w eV, (A.3.1.1)
v + w|* = |v]* + |w|? for all orthogonal v,w eV, (A.3.1.2)
v +w|? + v —w|* =2(|v]* + |w]?) forallv,weV, (A.3.1.3)
[rv] = A/|r|?(v,v) = |r||v|| forall v,w eV and reK. (A.3.1.4)
Formula is an abstract version of the pythagorean theorem, Equation is called the
parallelogram identity. The triangle inequality for the map | - || will turn out to be a consequence of

the next result.

3.1.5 Proposition (Cauchy—Schwarz inequality) Given a positive semidefinite hermitian form (-, )
on a K-vector space V the following inequality holds true:

[{v,wy| < |jv||w]  for all v,w e V. (A.3.1.5)

Equality holds if v and w are linearly dependant. In case {-,-) is positive definite, the converse holds
true as well.

Proof. First consider the case where |[v| = ||w| = 0. Note that this does not imply that v = 0 (or
w = 0) unless the hermitian form (-, -) is positive definite. Now put ¢ = —(v, w) and compute
0 < [lev +w|? = 2Re(e (v, w)) = —2[¢v,w)H|* . (A.3.1.6)

This entails (v, w) = 0 and the Cauchy-Schwarz inequality is proved for |v|| = |w| = 0.
If |v]| # 0 or |w| # 0, we can assume without loss of generality that ||v| # 0. Under this assumption

put
v, w)
[ol?

and compute

0 < [ev +w|? = |¢|*|v]* + 29%(6<v,w>) + |w|? =

_[wwl G, w G, wyP (A317)
o] ]2 oz

+ w]? = Jlw]?

Hence the estimate
o, w)]? < o*|w]?
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holds which entails the Cauchy-Schwarz inequality.

In the case where v, w are linearly dependant nonzero elements of V there exists a nonzero scalar
a € K such that v = aw. Therefore

v, w)l = lal [w]* = vlflw] .

If one of v or w is 0, then both sides of the Cauchy—Schwarz inequality are 0.

In the positive definite case, equality in (A.3.1.5) entails by Equation (A.3.1.7) that cv + w = 0

whenever v # 0. If v = 0, then v = 0 - w. In either case this means that v and w are linearly
dependant. m

3.1.6 Lemma A positive semidefinite hermitian form (-, -) on a K-vector space V is weakly-nondegenerate
if and only if it is positive definite that is if and only if

(SF5p) (v,v) > 0 for all v e V\{0}.

Proof. A positive definite real bilinear or complex hermitian form (-, -) is weakly-nondegenerate since
for every v € V\{0} the linear form (v, —) : V — K is nonzero by (v, v) > 0.

Conversely, if (v,—): V — K is nonzero for all v € V\{0}, then there exists an element w € V such
that (w,v) # 0. The Cauchy-Schwarz inequality entails

0 < [w,v)* < (w, w)<v,v) ,
which implies (v, v) > 0. Hence {-,-) is positive definite. O
3.1.7 Proposition The map

H ’ H : V_)R>07 v = HUH = \/<U7U>

associated to a positive semidefinite hermitian form {-,-) on a K-vector space V is a seminorm. If
the hermitian form is positive definite, then | - | is even a norm.

Proof. Absolute homogeneity |(N1)|is given by Eq. (A.3.1.4)). The triangle inequality is a consequence
of the Cauchy-Schwarz inequality:

2
lv+wl? = [[v]* +2%Re (v, w) + [w]® < ol* + 2 o] [w] + |w]* = (o] + [w])” .
Finally, if (-,-) is positive definite, then ||v| = 1/{v,v) > 0 for all v € V\{0}, so | - | is a norm. [

3.1.8 Definition By an inner product or a scalar product on a K-vector space H one understands
a positive definite hermitian form on 3. A K-vector space H endowed with an inner product {-,-) :
H x H — K is called an inner product space or a pre-Hilbert space.

A hermitian form on a K-vector space H which is only positive semidefinite is called a semi-inner
product or a semi-scalar product.

A Hilbert space is an inner product space (3, {:,-») which is complete as a normed vector space. In
other words, a Hilbert space is Banach space where the norm on the space is induced by an inner
product.
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3.1.9 Examples (a) The vector space R™ with the euclidean inner product

n

Gy R"xR" > R, ((vl,...,vn),(wl,...,wn)) — Zviwi
i=1

is a real Hilbert space. Obviously, (-, -) is linear in the first argument, symmetric, and positive definite,
hence a real inner product. The associated norm is the euclidean norm. We have seen before that
R™ with the euclidean norm is complete.

(b) The vector space C™ together with the hermitian form
() C"x C" — C, ((vl, cey ), (w1, . 7wn)) — Z@wl
i=1

is a complex Hilbert space. One immediately verifies that (:,-) is linear in the second argument,
conjugate-symmetric, and positive definite. Hence (-, -) is a complex inner product which we some-
times call the standard hermitian inner product on C™. Its associated norm is again the euclidean
norm, so by completeness of C” =~ R?" with respect to the euclidean norm one obtains the claim.

(c) The set
- oo}

of square summable sequences of complex numbers is a complex Hilbert space with inner product

? = {(Z'k ren € CN

o0

oyt 2 x 02— C, ((2k)ken, (Wk)ken) = Z ZRW -
prn)

To prove this one needs to first verify that ¢? is a subvector space of CN. For z = (23)peny € CN

denote by |z| the extended norm /> |zk|> = sup W/lecio |zx|2 € [0,0]. Then z € ¢2 if and
KeN

only if |z|| < c0. Now let a € C and z € 2 and compute

0
2, lazef? = a|
k=0

Hence az € 2. If z,w € (2, denote for each K € N by z(k) and w(g the “cut-off” vectors

laz] =

0
Dzl =lal - |z < 0.

k=0

(20,...,2K) € CE L and (wy, ..., wx) € CE+L respectively. By the triangle inequality for the norm
on the Hilbert space CX*! one concludes

K
Z 2+ wil? = 2 + wie)| < i) |+ lwi | < 2] + w] < oo

Therefore, the sequence of partial sums Z{C{:O |zx +wi|?, K € N, is bounded, so convergent by the
the monotone convergence theorem. One obtains

K
lz+w| = lim | > [z +wel? < 2] + [w] < o0
K—o s

89



A.3. Hilbert Spaces A.3.1. Inner product spaces

Hence z + w is square summable and ¢? a vector subspace of CY indeed. Note that our argument
also shows that the restriction of the extended norm to 2 is a norm.

We need to show that ¢-,-) is well-defined. To this end it suffices to prove that for all z,w € ¢? the
family (zWy),cy is absolutely summable or in other words that >,  |2xwk| < c0. One concludes
by the Holder inequality for sums

K K
2 [Ewwnl = ) laewn] < ezl [wee | < 2] el -
k=0 k=0

So the left hand side has an upper bound uniform in K which by the monotone convergence theorem
entails convergence of the partial sums and the estimate

e}

> 1Zrwk| < 2] Jw] < oo .

k=0
By definition it is clear that (-, -) is linear in the second argument, conjugate-symmetric and positive

definite, hence a complex inner product. Note that the norm associated to {-,-) coincides with the
above defined map | - |

It remains to be shown that ¢? is complete. Let (2")pen with 2™ = (27!), € ¢ for all n € N be a
Cauchy sequence in ¢2. For ¢ > 0 choose N, € N so that

"—2M" <e foralln,m=>= N..

|
For each fixed k£ € N one therefore has
lzip — 21| < 2" — 2™ <e forallm,m = N, . (A.3.1.8)

By completeness of C there exist 2z, € C such that lim, o 2} = 2z, for all £ € N. We claim that
2z = (2x)ken is an element of £2 and that (2"),cy converges to z. To verify this observe that for all
e>0, KeNandn > N,

K K K
Z |z — 2% = lim Z |2 — 22 < sup Z |2 — 27 < sup 2™ - 2P <€
k=0 m—® k=0 mz=Ne k=0 m=Ng

This implies by the triangle inequality and the fact that the Cauchy sequence (2"),ex is bounded in
norm by some C' > 0 that for all K e Nand N = NV,

K
D 1zl =zl < Nz = 2{30) | + 1200 | < 2 = 2oy | + 12V < 1+ C
k=0

Hence |z]| = 4/> 52 |2k|2 < 1+ C and z € £%. In addition one obtains

K
2 |z — 202 <e forallm> N, .
k=0

|z — 2" = lim
K—o

This means that z is the limit of the sequence (2"),cy and 2 is complete.
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(d) Denote by A the Lebesgue measure and let

f is Lebesgue measurable and | f||2 := 4 /J |f|2d\ < oo}
Rd

be the space of Lebesgue square integrable functions on R%. Then £2(R9) is a linear subspace of the
space of all measurable functions by Minkowski's inequality which reads

LQ(Rd):{f:RdHC

If +glp < flp + lglp for all measurable f,g:R? — C..
Hereby, | f|, denotes for p € [1,00) the £P-seminorm ({pa | f|Pd) Y7 of a measurable function f

RY — C. Note that ||f||, can attain the value o0, namely when f is not in the space £P(R?). By
Holder's inequality, the product fg is Lebesgue integrable for f, g € £2(R?) and one has the estimate

f FgldA = [Fgli < 1]z lgle -
]Rd

Hence the map
G s £2RY x LR = €. (fg) = | Fodh

is well-defined and a positive semidefinite hermitian form on £2(R%). By construction, the associated
seminorm is the £2-seminorm | - 2. Modding out £2(R?) by the kernel

fRd Fl2dA = 0}

LA(RY) := L2(RY)/N .

N = Ker(] - |2) = {f e £2(RY)

gives the Lebesgue space

The hermitian form ¢-, -) vanishes on N x £2(R%) and £2(R%) x N by the Cauchy-Schwarz inequality,
hence descends to a hermitian form

Gy PR x AR - C, (F+N,g+N) — | fgdx.
Rd

That hermitian form is positive definite, since (f + N, f +N) = 0 means {3, |f|2d\ = 0, hence
f eN. Let us show that L?(R?) is complete with respect to the L?-norm || - |2 induced by the inner
product. Note that on the quotient space | - |2 is a norm indeed by construction. So let (f,, + N)pen
be a Cauchy sequence in L?(R?). Choose a subsequence (fn, Jren such that

1
| fr = frp_yll2 < oF for all ke N+g

and put
gn(@) = D | fn () = fop_ (@) forzeR?andneN.
k=1

The limit function

g:R* = [0,0], £ — lim g,(x) = liminf g, (z)
n—00 n—0oo
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then exists even though it might not be finite everyhwere. Minkowski's inequality for the £2-norm
entails that ||g,||2 < 1 for all n € N, hence g is measurable and |g[2 < liminf, o |[gnll2 < 1 by
Fatou's lemma. Therefore, g(z) is finite for all - up to a set Z < R? of measure 0, and for those =
the series with partial sums g,, () converges absolutely. For all z € R\ Z the limit

k
fla) = B fo, (2) = fag + lim > (fa, (@) = fo,, (2))
j=1

therefore exists in C. Put f(x) = 0 for all z € Z, and let xz : R? — R be the characteristic function
of Z. Then the sequence of functions (xz fn, )ken converges pointwise to f, and each of the functions
Xz [n is measurable, actually even square integrable. Since

‘Xank‘ < ‘Xzfno| + gk < ’Xano‘ +4g for all ke N

and since |xz fno| + ¢ is square integrable by Minkowski's inequality, the pointwise limit f is square
integrable by Lebesgue's dominated convergence theorem, and f + N is in L?(R%). It remains to
show that (f,, + N),en converges to f + N in the norm || - |2. To this end let € > 0 and choose
N € N such that | f,, — fmm|2 < e for n,m = N. By Fatou's lemma one obtains

J |fn — f?d) < liminff |fo — fml?dX <® foralln> N .
Rd m—90 Jpd

Hence lim,, . ||fr — f]2 = 0, and L?(R%) endowed with the inner product {-,-) is a Hilbert space. It
is called the Hilbert space of square-integrable functions on R%. Note that for every complete measure
space (2, it) one obtains in the same way the Hilbert space L?((2, ;1) of square-integrable functions
on (£, ).

3.1.10 Theorem Let V be a normed K-vector space. Then the norm || - | : V. — R is associated
to an inner product {-,-» : V. x V — K if and only if the parallelogram identity

[v+w]® + v = w]* = 2]jv]* + 2]w]

holds true for all v,w € V. In this case, the inner product of two elements v,w € V can be expressed
by the polarization identity for K = R

1 1
w,w) = 7 (Jv+ w|? o —w|?) = 5 (lv+ wl? = o] = [w]?) (A.3.1.9)
respectively by the polarization identity for K = C

4
1
(v,w) = 5 Dk w+ iF o) (A.3.1.10)
k=1

Proof. The forward direction is a consequence of [3.1.4] Eq.|A.3.1.3] To show the backward direction
we consider two cases K = R and K = C separately.

1. Case. Given the norm | - || define (-,-): V x V — R by real polarization

(v, wy =

(Jv+w|?*=|lv —w|?), where v,weV .

| =
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Note that the parallelogram identity entails

(lo + w]* = Jol* = Jw]?) -

N | =

1
7 (o +wl® = o —wl?) =

Observe that by definition (v, w) = (w,v) and |[v| = 4/{v,v). Let us show additivity in the first
variable. Let v1,v2,w € V and compute using the parallelogram identity

[or + vz + wl* = 2o+ w]® + 2wz — o1 + w — waf?

o1 + vo + w|? = 2|jvy + w|* + 2|v1|? = Jva + w — vy|? .
Hence
[or + 02 2 w|? = Jor £ w]? + vz £w]? + o1 |* + [oa]? = o1 £ w —va]* = o2 £ w —wi]?
Subtracting the — version from the + version of this equation entails
(v + vo,w) =

(HU1 + vy + wHQ — |lvg +vo — wHQ) =

(lor + w[® + o2 + w]? = o1 = w|?* = vz = w[?) = (o1, w) + (w2, w) ,

[ING RN

so additivity in the first variable is proved. By induction one derives from this that for all natural n
(nv,w)y =n{v,wy forallv,weV. (A.3.1.11)

Since then (—nv, w) — n{v,w) = (—nv + nv,w) = 0 for all n € N, Eq. (A.3.1.11) also holds for
n€Z. Now let pe Z and g € N~g. Then q<§v, w)y = (pv,w) = p{v, w), hence one has for rational
r

{rv,wy = r{v,w)y forallv,weV. (A.3.1.12)
Since addition, multiplication by scalars and the norm are continuous, the function

1
R—>R, r— rv,w)y—r{v,w)y = 1 (”T’U + wH2 +rlv— wH2 — |lrv — wH2 —7rllv + w|\2)
is continuous. Since it vanishes over QQ, it has to coincide with the zero map. Therefore, Eq. (A.3.1.12))
holds for all » € R. So (:,-) is linear in the first coordinate. By symmetry, it is so too in the second

coordinate. Hence (:,-) is a symmetric bilinear form inducing | - ||.

2. Case. In the case K = C use complex polarization and put

4
1
(v,w) = 5 D ik fw+ i*f? forallv,weV .
k=1

Then (-, -) is conjugate-symmetric, since

W~

4
Ty = 3 3w+ ol = 3 DD = w4 ol = G,

k=1 k=1
Next compute

Re v, wy = 7 (Jw +vf*  Jw - v]*)

| =
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and )
Jm v, w) = 1 (Hw + ivH2 —Jw— iv“z) .

By the first case one concludes that PRe(:, ) and Jm(:,-) are both R-linear in the first and the second
coordinate. Moreover,

(Jw—=iv]* = w + iv]?) = =Tm v, wy = Re i{v,w)

| =

) 1, )
Re (v, iw) = i (le + UH2 — iw — UH2) =

and
1
Jm v, iw) = 1 (iw+ iv|? = |iw — iv||2) = Re(v,w) = Tmilv,w) ,

hence (-, -) is complex linear in the second coordinate. Finally,

1
Re(v,v) = |[v|*> and Tmlv,v) = 1 (Jv+ iv)* = o —iv]*) = 0.
This finishes the proof that (-, -) is a complex inner product inducing the norm || - |. O

3.1.11 Next we will turn Hilbert spaces into a category. To this end one needs to know what
morphisms in this category should be. There are two options each giving rise to a category of Hilbert
spaces. These categories just differ by their morphism classes. The first one is to have as morphisms
linear maps A : H; — JHs preserving the inner products which means that they fulfill

(Avy, Avgy = (v1,v9)y for all vi,ve € H; .

By Theorem [3.1.10| this property is equivalent to

|Av| = |v| forall ve H; ,

that is to A being norm preserving or isometric. Obviously, the identity map on a Hilbert space is
isometric and the composition of two composable isometric linear maps is again isometric and linear.
Hence Hilbert spaces together with norm preserving linear maps between them form a category which
we denote by Hilb,,. The isomorphisms in this category are the surjective isometric linear maps
between Hilbert spaces. Such maps are called unitary. The condition of a linear map being norm
preserving is pretty restrictive, so the category Hilbn, contains only few morphisms. This can be
cured by allowing all bounded linear maps between Hilbert spaces to be morphisms that is of all linear
A : Hy — Hy for which there exists a C' = 0 such that

| Av| < Cllv| for all ve 3¢ . (A.3.1.13)

The existence of a smallest such C' is guaranteed by the following. It is called the operator norm of
A and is denoted || A||.

3.1.12 Lemma The operator norm of a bounded linear operator A : Hi — Ho between Hilbert
spaces Hy and Hs exists and is given by

|All = sup {|Av] | v e 31, |jv]| = 1}

sup {[|Av| | v e Hy, [v] < 1}
= sup{\<w,Av>| | ve Hy, we Hy, |v]| = |w| = 1} .
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Proof. If A : Hy — ¥ is bounded, then the set {|Av| | v € Hy, |v]| = 1} is bounded, hence has a
supremum Cjy. This implies that for all non-zero v € H;

ot = 1ol |4 (75 )| < ol

Hence the estimate ((A.3.1.13]) holds true for C' = Cy. Moreover, C is the smallest such C' because if
0 < C < Cy, then there exists v € H; with |v| = 1 and [|Av|| > C;. This proves that the operator
norm of A exists and that it fulfills [|A| = Cp.

By definition of Cy, the estimate | A = Cy < sup {|Av| | v € Hy, |v]| < 1} holds true. By definition
of the operator norm, |Av| < |A| for all v € H; with |v]| < 1. The two estimates together entail
the equality ||A|| = sup {|Av| | v e 0y, |v] < 1}.

The Cauchy—Schwarz inequality entails
sup {|(w, Av)| [ v e F1, we Hy, |v]| = |w| =1} < [A] .

The converse estimate follows by the observation that

A
sup {[(w, Av)| [ w € 36, ful = 1} > |(Z, Av )| = 4]

whenever Av # 0. This proves the last claimed equality. O

Every norm preserving linear map is bounded with operator norm 1. In particular, the identity map
on a Hilbert space is bounded. Moreover, if A : Hy; — Hs and B : Hy — Hgz are bounded linear
operators between Hilbert spaces, then the composition BA : H; — Hjs is bounded with operator
norm < || B| | Al since for all v € H; with [jv| <1

|BAv| < |B] |Av] < [ B[ |A] -

Hence Hilbert spaces as objects together with bounded linear maps as morphisms form a category
which we denote by Hilb and call the category of Hilbert spaces. Note that the morphisms in this
category appear to “forget” the inner product and just preserve the linear and the topological structure.
John Baez (Baez, [1997| p. 133) has explained how to heal this apparent defect by showing that Hilb
carries a so-called =-structure given by the adjoint map on bounded linear operators. We will come
back to this point later when we introduce adjoint operators.

As proved already for Banach spaces, a linear map between Hilbert spaces is bounded if and only if it
is continuous. For reasons of completeness and convenience we state here the result for inner product
spaces.

3.1.13 Proposition Let A : Hy — Hy be a linear map between two inner product spaces. Then the
following are equivalent.

(i) A is bounded.
(i) A is continuous.

(iii) A is continuous at 0.
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Proof. — Assume that A is bounded. Let |A| := sup,cq, |Av| be its norm. Then, for
all v,w e H;
|Av — Aw| < [A] - v —w] .

Hence A is Lipschitz continuous, so in particular continuous.

— . If the map A is continuous, it is in particular continuous at the origin.

(iii)) = [(0)} If A is continuous at the origin, there exists § > 0 such that for all v € H; the estimate
[Av| < 1 holds whenever |v| < 4. This implies that for v with ||v| <1

1
[Av| = 26 ‘A <25v> H <20 .
This means that A is bounded. O

3.1.14 Last in this section we will introduce bounded bilinear and sesquilinear maps. We define them
for normed vector spaces. Their main application lies in the operator theory on Hilbert spaces, so we
introduce them here.

3.1.15 Definition Let V; and V3 be two normed vector spaces over K and denote the norms on V;
and Vg by the same symbol || - ||. Assume that b: V| x Vo — Kiis a bilinear or sesquilinear form that
is b is linear in each argument respectively b is conjugate linear in the first and linear in the second
argument. The form b: Vi x Vo — K then is called bounded if there exists a C' > 0 such that

b(v,w)| < C|v| |w| forallve Vi, weVa.

In this case,
[6] := sup {[b(v,w)| | ve Vi, we Va, v = |w]| =1}

exists and is called the norm of the form b.

3.1.16 Example The inner product on a (pre-) Hilbert space is bounded by the Cauchy-Schwarz
inequality and has norm 1.

3.1.17 Proposition A bilinear or sesquilinear form b : V1 x Vo — K defined on the cartesian product
of two normed vector space V1 and V4 over K is bounded if and only if it is continuous.

Proof. If b is bounded, then
b(v, w) — b(v', w")| < |b(v, b(v', w)| + b0, w) — bV, w")| <
< o] (HwH Jo = + V'] |w — w])
for all v,v" € Vy and w,w’ € V5. Hence b is locally Lipschitz continuous, so in particular continuous.

Conversely, assume now that b is continuous. Then one can find § > 0 such that for all v € V1 and
w € Vg of norm less than ¢ the relation |b(v,w)| < 1 holds true. But that entails for all non-zero

v, W
4 |vl| [jw]] v w 4
b = -b(4d ) < = )

Hence b is bounded. O
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3.1.18 Remark Given two normed vector spaces or more generally two topological vector spaces V;
and V3 one can consider bilinear or sesquilinear forms b : V1 x Vo — K which are only separately-
continuous. That means that for all v € V; the map b, = b(v,—) : Vo — K and for all w € V3 the
map b, = b(—,w) : Vi1 — K is continuous. In general, separate-continuity is strictly weaker than
continuity unless the underlying vector spaces are Banach spaces where the two notions coincide as
a consequence of the Banach—Steinhaus theorem. Let us prove this. By continuity of b, there exist
C, = 0 such that |b,(w)| < Cy |w]|| for all w € Vo and C\, = 0 such that |b,(v)| < Cy, |v| for all
v € V1. Hence, for all w e Vq

sup |by(w)| =  sup |by(v)] < Cyp < 0.
veV, v <1 veV, Ju]<1

The Banach-Steinhaus theorem now entails

sup |b(v,w)| = sup |by| < o0 .
vweV, o], Jw|<1 veV, [ul<1

Therefore, b is bounded, so continuous by the preceding proposition.

A.3.2. Orthogonal decomposition and the Riesz representation
theorem

3.2.1 One of the issues with infinite-dimensional analysis is that a closed subspace of an infinite
dimensional Banach space might not have a closed complement. Fortunately, the situation in Hilbert
space theory is not so grim because every closed subspace of a Hilbert space admits an orthogonal
complement. This is one of the four crucial properties which distinguish Hilbert spaces from Banach
spaces and which are stated in the following.

In this section J will always denote a Hilbert space over the field K = R or K = C. The symbol
{(-,-> will stand for the inner product of H.

3.2.2 Theorem (Best approximation theorem) Every closed convex nonempty subset C' of a Hilbert
space H has a unique element of minimal norm.

Proof. Let d = inf{||v| | v € C'} which is a non-negative real number. We claim there exists a unique
v € C with |vg|| = d. For uniqueness, consider two vectors vy, v; satisfying the desired property, and
let v = 1(vo + v1) be their midpoint. Then

1 1
[0l = Sllvo +vill < 5 (flvoll + oa]]) =

By minimality of d this entails ||v| = d. By the parallelogram identity

1

1
[0 o] + [gm -] =22 22" -
hence
1 ? 2 2
Hn-w) <d= ol =0,
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proving vg = vy.

For the proof of existence observe that by definition of d there exists a sequence (v, )neny < C' such
that lim,, . |vn|| = d. By convexity

1
5(1)” +vy) € C
for all n,m € N, hence £ |v, + v;,,|? = d2. The parallelogram equality entails
0 < Jon = vml® = 2on]? + 2vm|? = [vn + vi|® < 2Jval* + 2f0m | — 4d* .

Since lim;,_,o [vy| = d there exists for given ¢ > 0 an N € N such that |v,[? — d? < 1&2 for all
n > N. Hence, forn,m > N
0< an_vm” <€,

and (v, )nen is @ Cauchy-sequence, so convergent by completeness of H. Put vy := lim,, . v,,. Then
vo € C since C'is closed and |vg| = lim;,—, |vn| = d. The existence claim follows and the proof is
finished. O

3.2.3 Theorem and Definition (Orthogonal decomposition theorem) Let V. < H be a closed
subspace of the Hilbert space 7. Then the orthogonal complement

V= {weH | (v,wy =0 for eachv eV}

is a closed subspace of I and 3 = V@ V. The map pry : H — V which maps w € I to
the unique wi € V such that w — wy € V' is called the orthogonal projection onto V. It satisfies
|w — pry(w)| = d(w, V) := inf {|v —w]| | v € V} that is pry(w) is the unique element of V having
shortest distance from w.

Proof. For v € H define v* : H{ — R by v’(w) = (w,v). Recall that this map is continuous and
linear. Hence the kernel (v”)~1(0) is a closed linear subspace of H and

V= (@) 7(0) (A.3.2.1)

veV

is a closed linear subspace. To show V n V+ = {0}, consider v € V. n VL. Then |v|? = (v,v) = 0.
Next we want to show that every w € H can be written in the form w = wq + wy with w; € V and
wy € VL. To see this put C = w — V. Then C is closed and convex. By the best approximation
theorem there exists a unique element wy € C' of minimal norm. Let w; be the unique element of
V such that wy = w — wy. It remains to show wy € V. Since wy has minimal norm among the
elements of w — V, the following inequality holds for all vectors v € V:

Jwa|? < wa +0]* = wa]* + 2 ReCwa, v) + [v]* .

Hence
0 < 2Re(ws, v) + [v]|* forallve V.

Now assume that |[v| = 1 and choose ¢ € R such that €*?{ws, v) € R. Setting v’ = ¢*v, one obtains
for all A € R by the last inequality

0 < 2w, W'Y + | M'|2 = 2X(wa, ) + N2 .
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For A = —(ws,v") this entails the estimate
[Cwa, VY|P = — (—2¢wa, ') + [wa, v/)[?) = — (2Mwa,v') + A?) <0 .
Hence (ws, vy = 0 for all unit vectors v € V, therefore wy € V*.

The remainder of the claim is now an immediate consequence of the construction of wy from the
given w and the observation that pry (w) = w;. O

3.2.4 Corollary For every subspace V. H of a Hilbert space H the orthogonal complement V* is

closed, and the relation
vi=v"

holds true. Moreover,

V=wht.

Proof. By Equation (A.3.2.1)), the orthogonal complement V1 is closed. Since V < V the inclusion
VL < V1 holds true. The converse inclusion V+ < VL follows from the observation that if w e V+

and (vn)nen is a sequence in V' converging to some v € V, then
(w,vy = lim {w, v,y =0 .
n—0o0

1

This proves the equality V- = 7. The inclusion V = (V")+ = (V1)L is immediate by definition

of the orthogonal complement. Since
H=Veovi=whtevt
by the preceding theorem, the equality V' = (V1) follows. O

3.2.5 Theorem (Riesz representation theorem for Hilbert spaces) Let H be a Hilbert space
and H' its topological dual. Then the musical map

PHSH, v’ = (Howe ,w)e K)
is an isometric isomorphism which is linear in the real case and conjugate-linear in the complex case.

Proof. Obviously, ” is linear if the ground field K equals R and conjugate-linear if K = C. Now
observe that for all v € H by the Cauchy—Schwarz inequality

||| = sup {|[¢v,w)| | w e H& |w]| =1} = o] ,

hence ” is an isometry, so in particular injective. It remains to show surjectivity. So assume that

a : H — K is a nontrivial continuous linear form. Let V be its kernel. Then V is a closed linear
subspace of J{. Since « is nontrivial, the orthogonal complement V' is nontrivial, too. Hence
V+ = 3{/V is isomorphic to ima = K and there exists a vector v € V+\{0} such that a(v) = 1.
Since v spans V* there exists for every w € 3 a unique \,, € K such that w = pry (w) + A\,v. Then
compute

v )\w

’ 1
a(w) = a(Ayv) = Ay and (”02) (w) = W(U,u;} = W<v,v> = Ay -

b
This entails o = (W) , and ” is surjective. O
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3.2.6 Remark Sometimes in the Hilbert space literature the inverse of the musical isomorphism
> H — H' is denoted ¥ : H’ — H. We will follow that convention.

3.2.7 Corollary Every Hilbert space H is reflexive that is the canonical map
H— H" v (H 35X~ Av) € K)
is an isometric isomorphism.
Proof. By the Riesz Representation Theorem, the dual H’ is a Hilbert space with inner product

<<'7 >> R K, (/\7/0 = <<)‘7:U’>> = <:uﬁ7 Aﬁ> :

b

Hence, by applying the Riesz Representation Theorem twice, the map ? o : H{ — H” is an isometric

linear isomorphism. Now compute for v € H and A € H’
(") (N) = 7, A) = WL vy = A(v) .
Hence ” o” coincides with the canonical map above and the claim follows. O

3.2.8 Corollary Let Hq and Hy be two Hilbert spaces and b : Hy x Ho — K a bounded sesquilinear
form. Then there exists unique bounded linear map A : Ho — Hj such that

b(v,w) = v, Aw) forallve Hy, we H, . (A.3.2.2)
Moreover, the operator norm | A| coincides with |b||.
Proof. First let us show uniqueness. So let A, B : Hy — H; be bounded and linear so that
b(v,w) = (v, Aw) = (v, Bw) for all ve H;i, we H,.

Then |(A—B)w|? = ((A— B)w, Aw— Bw) = b((A— B)w,w) —b((A— B)w,w) = 0 for all w € Hy
which entails equality of A and B.

To prove existence observe that for every w € Hy the map

by 1 Hi — K, v — b(w,v) := b(v,w)

is bounded and linear, so by the Riesz representation theorem there exists for every w a unique element
Aw € H; such that (Aw,v) = b(w,v) for all v € H;. By construction, Aw = (by,)f. Since the maps
Hy — H}, w — by, and i H| — H; are both conjugate-linear, A is linear. Hence A is the desired
linear operator fulfilling Equation (A.3.2.2)).

For the operator norm compute

| Al = sup { [<v, Aw)| | v e Hy, we I, o] = |w]| =1} =
= sup { [b(v,w)| | ve Hy, we Hy, |v] = [w]| =1} = [b] .

Hence A is bounded with operator norm equal to |[b] and the claim is proved. O
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3.2.9 Last in this section we will examine the Hilbert direct sum or just Hilbert sum of a family
(H;)ier of Hilbert spaces. It is defined by

PH; = { Vi)iel € HIH ‘ [vil?),.; is summable} =

iel el

_ {( s i |3C =0V J € Phn(L ZH%HQ }
iel

ieJ

where, as usual, Pg,(I) denotes the set of all finite subsets of I.

3.2.10 Proposition Let (H;);c; be a family of Hilbert spaces. Then the Hilbert direct sum @J—Ci is
el
a Hilbert space with inner product given by

(== @I x DI =K, (et (wier) = S iy wi) -

iel el el

Proof. We show first that @J—Ci is a subvector space of the direct product [ [,.; #;. Let z € K and
iel
(vi)ier, (w;)ier € PH;. Choose C, D = 0 such that

iel

Dol <C and ) |wil* <D forall J e Pgn(I) .

i€ ieJ
Then
Dzvil® =12 D oil* < |21 C for all J € Pan(I) (A.3.2.3)
i€ ieJ

50 (2v;)ier € @Hi. Moreover, by Minkowski's inequality for finite sums,
iel

2
2
D i+ wil* < \/Z Joil2 + D] Jwil? | < (\FC+ \/5) for all J € Pn(I) . (A.3.2.4)
e e e

Hence the family (|v; + w;]?),_; is summable and (v; + w;);.; € DH;.

iel

Next observe that the map

| =1 @ = K, @ier = |(iiet] =, [> Jvill?
iel el

is well-defined by definition of the Hilbert direct sum. It is even a norm by (|A.3.2.3)) and (A.3.2.4).

Now we need to show that the inner product on é—jﬁ]{i is well-defined which means that the family
i€l

({vi,wi)),e; is summable for all (v;)ier, (wi)ier € @FH;. To this end let J < I be a finite subset.
1€l
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Then, by the triangle inequality, the Cauchy—Schwarz inequality on the Hilbert spaces H; and the
Cauchy—Schwarz inequality for finite sums,

Do w| < 33 K wil < Yol lwll < Y5 il -, 35 lwill® < [[(wier| |(wiier | -

€eJ € e € e

Hence the family ({v;,w;)),c; is absolutely summable, so in particular summable, and the inner
product is well-defined.

By definition and since all the inner products on the Hilbert spaces H; are conjugate symmetric
and positive definite, the map (—, —) on @XH; has to be conjugate symmetric and positive def-
el

inite as well. It remains to show linearity in the second argument. Denote for (v;)ier, (w;)icr €
[Lier 3 and J € Pein(I) by {(vi)ier, (wi)ier)s the finite sum . ;{(v;, w;). Observe that the net
{(vi)ier, (Wi)ier)g _ converges to {(v;)ier, (w;)iery in case both (v;)ier and (w;)ier are in

Je?fln(I)
@J‘Cl Now let z € K and (Ui)iela (wi)ie], (wé)iel S @g{z Then
iel iel

{(vi)ier, (Wi)ier + (wg)ier)s = {(vi)ier, (wi)ier)s + {(vi)ier, (W} )ier)s and
(vi)ier, 2(wi)ier)s = 2{(vi)ier, (Wi)ier) -

By convergence of all the nets (<(vi)7;€1, (wi)i€[>J) (1) linearity in the second argument follows.

JEfPﬁn
By construction, the norm associated to the inner product (—, —) on @JH; coincides with the above
el
defined norm | — |. It remains to show that 3; equipped with the norm | — | is complete. To this
i€l

end observe that for every finite J < I the map

[ =1, TT%6 = Rso, iier = VK@iier, (0i)ierys = , [ il
iel e

is a seminorm and that (v;)ier € [ [;c; 30 lies in the Hilbert direct sum é—jﬂﬁ if and only if the family
el

(| ('l)i)ie[’|J)J€?fin(I) is bounded. Now let ((v/")ier),, o be @ Cauchy sequence. Let & > 0 and choose

N, € N such that

|(0)ier — (v} )ier| <& forall n,m > N. . (A.3.2.5)

Then
H V" )iel — i)iEIHJ <e¢e forall JePg(I)and n,m = N, . (A.3.2.6)

Taking J = {j} for j € I this implies that the sequence (v} ),en is @ Cauchy sequence in the Hilbert
space H;. Let v; € H; be its limit. The family (v;);cr then is an element of é—\)ﬂ-fi. To verify this

i€l
put N = Nj and observe that by (A.3.2.6)) for all finite J < I

[@iet |y <[ Yier]; + |@iier = (0 )ier] =

= [ (v} ier |, + lim | wier — (W ier |, < | (W] )ier| + 1.
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Hence the family (||(vi)ie1||J is bounded and (v;)es lies in the Hilbert direct sum of the

)Jeﬂ)fin )
spaces H;, i € I. Moreover, ((A.3.2.6)) entails that

H(Uz’)iel — (v zeIHJ = nlblinoo H " )ier — (v} zeIHJ e forall J e Pg,(I) and n > N, .

Since H(Ui)ie] — (v?)ieIH is the limit of the net (H (vi)ier — (U?)iEIHJ)JefPf- )’ the estimate

||(Ui)z'el—( Vi zeIH e foralln > N,

follows, and the sequence ((v;")ier),,cy COnvergences to (v;);er. This finishes the proof. O

A.3.3. Orthonormal bases in Hilbert spaces

3.3.1 Definition A (possibly empty) subset S of a Hilbert space H is called an orthogonal system
or just orthogonal if for any two different elements v, w € S the relation (v, w) = 0 holds true. If in
addition |v| = 1 for all elements v € S, then the set is called orthonormal or an orthonormal system.
A family (v;)ier of vectors in H is called orthogonal if (v;,v;) = 0 for all 4,5 € I with i # j and
orthonormal if in addition ||v;| = 1 for all i € I.

3.3.2 Obviously, the set of orthonormal subsets of a Hilbert space is ordered by set-theoretic inclusion.
Therefore, the following definition makes sense.

3.3.3 Definition A maximal orthonormal set in a Hilbert space H is called an orthonormal basis or
a Hilbert basis of J.

3.3.4 Proposition Every Hilbert space H has an orthonormal basis.

Proof. Wothout loss of generality we can assume that 3 # {0}, because ¥ is a Hilbert basis for {0}.
Let O denote the set of orthonormal subsets of H{. As mentioned before, O is ordered by set-theoretic
inclusion. Let € < O be a non-empty chain. Put U = | Jg.eS. Then U is an upper bound of €. So
by Zorn's lemma O has a maximal element. O

3.3.5 Remark (a) By slight abuse of language we sometimes call an orthonormal family (b;)c; in a
Hilbert space H an orthonormal basis or a Hilbert basis of 3 if the set {b; | i € I} is an orthornormal
basis.

(b) If on an orthonormal basis B — K a total order relation is given, one calls B an ordered Hilbert
basis of J. Likewise, an orthonormal basis of the form (b;);cs is called ordered if the index set I
carries a total order.

3.3.6 Proposition (Pythagorean theorem for orthogonal families) An orthogonal family (v;);er
in a Hilbert space H{ is summable if and only if the family of norms (|v;||),.; is square summable. In
this case one has

Z il -
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Proof. Assume that (|v;),c; is square summable or in other words that the net of partial sums
(Xics Hvi|\2)J€TF () converges to some s € R. For € > 0 choose a finite J. < I such that for all
finite J with J. < J < I the relation

5= Y1l < S

e

holds true. For finite K < I with K n J. = (J one then obtains by the pythagorean theorem for
finite orthogonal families, Eq. (|A.3.1.2)),

2
| D] = Dl <|s— X Il +]s = X Il?] <<
€K €K

ieKude i€Je
Hence (3., Vi) jep,, (1) 1s @ Cauchy net in 3, so convergent.

Now let (v;)ier be summable to v € H. Then there exists a J; € P (I) such that for all finite J < I
containing J;
o =20
eJ
This implies by the pythagorean theorem for finite orthogonal families
) 2
el = | Y| < o= D u
ieJ eJ 1€

Therefore, the net of partial sums (3, [lvi]?)

<

2
+ Iv!> < (L+[of)?

JePen(l) 1S bounded, so convergent since each term
[vi]|? is non-negative.

By continuity of the inner product and pairwise orthogonality of the v; one finally obtains in the
convergent case

H % <Z%Zw> Z<vw2w> S 3w vy = il

el jel el O]

3.3.7 Proposition Let (v;);e; be an orthonormal family in a Hilbert space H. Then for every v € H
the family ((v;,v)),.; is square summable and Bessel's inequality holds true that is

D v, P < vl -
el
Proof. Let J c I be finite. Then, by the pythagorean theorem for finite orthogonal families
2 2
0< o= vpui| = ol? =23 e o) + | Yo opmi| = ol = i, )12
ieJ ieJ ieJ ieJ
Therefore, for all J € Pg, (1)

2
S iy 0312 < o] (A3.3.1)
ieJ
Hence, by Proposition [1.5.9, the family (|(v;,v)|)ier is square summable. Bessel's inequality now
follows from the observation that in Equation ((A.3.3.1)) one can pass over to the limit of the net

NP/ 2
(Sies [P <) s

104



A.3. Hilbert Spaces A.3.3. Orthonormal bases in Hilbert spaces

3.3.8 Theorem Let B be an orthonormal system in a Hilbert space H. Then the following are
equivalent:

(1) The orthonormal system B is maximal, i.e. a Hilbert basis.

(2) The orthonormal system B is total that is for all v € H such that {v,by = 0 for all b € B the
equality v = 0 holds true.

(3) Foreverybe B let Hy = {rbe H | r € K}. Then the canonical map

L @DH = H, (e — Y, 0
beB beB

is an isometric isomorphism.
(4) The closed linear span of B coincides with K.

(5) For all v e H, one has the Fourier expansion

v = Z(v,b)b .

beB

(6) For all v,w € H, one has

(w,wy = > v, by, w) .

beB

(7) For all v e H, Parseval's identity holds true that is

[ol* = ) Ko, &I .

beB

Proof. = . If v.;é 0 th.en [ is @ unit vector orth.og.onal to each v;. Hence {v} U B is an
orthonormal system which is strictly larger than B, contradicting .

= First note that by the pythagorean theorem for infinite families, Proposition [3.3.6} the
canonical map ¢ : @beBHb — H is well-defined and an isometry. Hence ¢ is injective. It remains to
show that ¢ is surjective. To this end observe that im ¢ is closed in 3 since ¢ is an isometry (the image
is complete). If ¢ is not surjective, then im " is not the zero vector space. Choose v € im*\{0}.
Then v is orthogonal to each element of B, but v # 0. This contradicts [(2)] so im: = H.

= [(B)} We can represent any v € H in the form v = v ((p)seB) = Dpep Vb With (v))cp €
@Dpe g Hp. Write vy, = 1y, b for every b € B, where 1, € K is uniquely determined by v,. Then compute

using continuity of the inner product

{v,by = <2 Ve, by = Z rele, by =1y .

ceB ceB
Therefore,
v = Z rpb = Z@,b}b :
beB beB
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(5) = [(6); Fourier expansion of v,w € H gives v = > {v,b)b and w = > {(w,b)b. Then, by
beB beB
continuity of the inner product,

(w,wy = > v, by, w) .

beB
= Let v € H. Then bZ;}@, byb € Span(B) for all finite J = B. By Fourier expansion v is
€
the limit of the net <Z<v,b>b , so v lies in the closure Span(B).
beJ JE€Psin(B)
= : Assume that {(v,b) = 0 for all b € B. By v can be written as a limit v = lim vy,

where v, € Span(B) for all n € N. Then {(v,v,) = 0 for all n € N by assumption. By continuity of
the inner product this implies
[o[* = lim (v, v,) =0,
n—0oo

sov = 0.

@ = : Put v = w. Then, by assumption,

[ol* = Cv,0) = X v, b)Xb, 0y = 3 Ko, BI

beB beB

= (1)} Assume[(7)]and that|[(1)]is not true. Then there exists v € H with |v| = 1 and {(v,b) =0
for all b € B. But then ) )
[o]* = > Ko, b =0,

beB O

which is a contradiction.

A.3.4. The monoidal structure of the category of Hilbert spaces

3.4.1 Let K be the field of real or complex numbers. Hilbert spaces over K together with bounded
K-linear maps between them form a category denoted by K-Hilb or just Hilb if no confusion can arise.
This can be seen immediately by observing that the identity map T4¢ on a Hilbert space is a bounded
linear operator and that the composition Bo A : H; — H3 of two bounded linear operators between
Hilbert spaces A : H; — Hy and B : Hy — Hjz is again a bounded linear operator. We want to
endow the category Hilb with a bifunctor ® : Hilb x Hilb — Hilb so that it becomes a monoidal
category. The (bi)functor & will be called the Hilbert tensor product.

Unless mentioned differently, Hilbert spaces, vector spaces and the algebraic tensor product ® in this
section are assumed to be taken over the ground field K.

3.4.2 Proposition Let Hq and Ho be two Hilbert spaces. Then there exists a unique inner product
Gy (Hr ®@Ha) x (Hy ® He) — K on the algebraic tensor product Hy ® Ho such that

<’l)1 ®Ug, w1 Q w2> = <v1,w1> . <v2,w2> for all V1,W1 € j‘fl, V9, W9 € J{Q . (A.3.4.1)
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Proof. Let us first provide some preliminary constructions. Recall that for every pair of vector spaces
V1 and Vy the bilinear map

7 : Hom(V1,K) x Hom(Vg,K) — Hom(V; ® Va, K),
(A1, A2) = (Vi@ Va = K, v1 @ — Ai(v1) - Ao (v2))

induces a linear map
7 : Hom(V1,K) ® Hom(Vy, K) - Hom(V; ® Va, K)

by the universal property of the tensor product. This map is an isomorphism. To see this choose
a basis (v1;)ier of Vi and a basis (vg;)jes of Va. Let (v);)ier and (Uéj)jeJ denote the respective

dual bases of V{ and Vj. Then (Uiz ®v§j> is a basis of Hom(V1,K) ® Hom(V2, K) which
(i.j)elxJ

under 7 is mapped bijectively to the basis ((vy; ®v2j)’)(l.’j)dx] of Hom(V; ® V3, K) dual to the
basis (U1i®vzj)(i,j)elxj of V1 ® Vo. Hence 7 is a linear isomorphism as claimed, and we can
identify the tensor product A\; ® Ay of two linear functionals \; : V; — K, i = 1,2 with its image in
HOHI(Vl &® VQ, K)

Now observe that for two conjugate-linear maps 11 : Vi — Kand ug : Vo — K the map 7% (1, p2) =
1 @7z : V1 ® Vo — K is conjugate-linear and satisfies
T (1, p2) (11 ®v2) = pi(vy) - pe(ve)  for all vy € Vi, vg € V. (A.3.4.2)
One obtains a map
7% : Hom*(V1,K) x Hom*(Va,K) —» Hom*(V; ® V2,K) ,

where here the symbol Hom™*(V, K) denotes the space of all conjugate linear functionals on a vector
space V. Since 7* is biadditive and since 7*(zu1, u2) = 7*(p1, zp2) for all p; € Hom*(Vy,K),
po € Hom*(Va,K), and z € K, the map 7* factors through a linear map

7% : Hom*(V1, K) ® Hom*(V3, K) — Hom™*(V; ® V3, K) .

Using the above bases (v1;)icr and (v2j)jes of Vi and Vi respectively, one observes that 7* is an

isomorphism since it maps the basis (E@E) e of Hom*(V1, K) ® Hom*(Vg, K) bijectively

to the basis ((Uu ® vgj)’) — of the space Hom*(V;®V2, K). So 7* is also a linear isomorphism,
1,7 )€l X

which allows us to identify the tensor product 111 ® o of two conjugate linear functionals p; : V; — K,

i = 1,2 with its image in Hom*(V; ® Vo, K).

After these preliminary considerations we consider the map

J‘Cl X g’fg —>Hom*(fH1 ®J‘C2,K), (wl,w2) HE@@ZT* (w?,w%) =7/';<w72®wig> y

which is well-defined and bilinear since the musical isomorphisms b, H), w—(w,—), 1 =1,2,
are conjugate-linear and since 7 is bilinear. Hence it factors through a linear map

,8 . J‘Cl ®g'f2 i HOHl*(j'fl ®J’C2,K)
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such that
5(11}1 ®w2)(v1 ®Ug) = <1)1, w1> . <1)2, w2> for all V1,W1 € j‘fl, V9, W2 € fHQ . (A.3.4.3)

Now put
¢ (i@ H2) x (Ha @ Hz) = K, (v, w) = (v, w) := (w)(v) .
Then (-, -) is sesquilinear by construction, and (A.3.4.1)) holds true by (A.3.4.3).

Let us show that (-, -) is positive definite. Let v = Y| v1,®uvai € H1®Ho. Choose an orthonormal

basis e, ...,en of the linear subspace spanned by va1,...,v2,. Expand vy = Y7, crie; with
Ckly+++,Ckm € K. Then
n n m m n m
v = Z vk @ Vo, = Z Z vk ® (crie;) = Z < Ckﬂ)w) ®e; = Z w®e;, (A3.4.4)
k=1 k=1i=1 i=1 \k=1 i=1

where wi; = Y cpv1x. Hence

<U, ’U> = <Z w14 ® €, Z wlj ® €j> = Z 2<w1i, w1j><ei, €j> = Z lei”2 = 0. (A.3.4.5)
i=1 j=1 =1

i=1j=1
Moreover, if (v,v) = 0, then wy; = 0 for i = 1,...,m, which implies v = >, wi; ® ¢; = 0. So
{+,+y is an inner product on 3; ® Hy satisfying (A.3.4.1)). It is uniquely determined by this condition
since the vectors v ® vy with v1 € H; and vy € Hy span H; ® Ho. O

3.4.3 Definition Let 3{; and H be Hilbert spaces. The Hilbert completion of the algebraic tensor
product H; ® Ho equipped with the unique inner product (-, -) fulfilling will be denoted
Hy ® Hy, its inner product again by (-,-). One calls the Hilbert space (9—[1 ® Ha, (-, >) the Hilbert
tensor product of H; and Hs or just the tensor product of Hy and Hs if no confusion can arise.

3.4.4 Proposition Let H; and Hy be Hilbert spaces.

(i) Let Ay < 3, and Ay < Hy be subsets which are total Hy and Ho, respectively. Then the set of
simple vectors a1 @ ay with a1 € Ay and as € Ay is total in the Hilbert tensor product H1 @ Ho.

(i) If (ei)ier and (fj)jes are orthonormal bases of 1 and Ha, respectively, then (e; ® f;) i jyerxs
is an orthonormal basis of the Hilbert tensor product H1 ® Hs.

Proof. ad (i). Recall that a subset A < J{ or a family A = (a;);es of elements of a Hilbert space
JH is called total in H if the linear span of A is dense in H. By density of the algebraic tensor
product H; ® Ho in the Hilbert tensor product H; ® Ho, the set of simple tensors v; ® vy with
(v1,v2) € Hy x Hy is total in FHy ® Hs. Hence it suffices to find for each such pair (v1,v2) and all
€ > 0 vectors wy € Span A1 and ws € Span Ay such that

€
Hvl QR vy — wy ®’U)2H < 5 .

By totality of A; in J; there exist w; € Span A; for i = 1,2 such that

e

lv1 — w1] < min {1, -
2([Jv2]| +1)

} and | | < °
Vg — W9 _
2([Jor] + 1)

Then
lv1 @ v2 — w1 @ wal| < v —wi [lv2] + v — wa|wi] <& .
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ad (ii). The family (e; ® f;)i j)erx. is orthonormal by definition of the inner product on J(; ® Hs.
It is total by [(i)] and therefore a Hilbert basis. O

3.4.5 Proposition Assigning to each pair of Hilbert spaces H1 and Hy the Hilbert tensor product
H, ® Ho and to each pair of bounded linear operators Ay : Hy — Hs and Ay : Ho — Hy between
Hilbert spaces the unique bounded extension A ® Ay : H1 ® Ha — H3y ® Hy of the operator A} ®
Ayt Hy @ Hoy — Hz®@FHy, v1 @ vg — A1(v1) ® Ag(ve) comprises a (covariant) bifunctor

® : Hilb x Hilb — Hilb .
Moreover, ® is isometric in the sense that

Hv1 ®’U2H = HU1H HUQH for all (NS j‘fl, V9 € 5{1 and (A.3.4.6)
”Al ®A2” = HAlH HAQH for all A1 € 53(5‘(1,5‘(3), AQ € %(%2,9{4) . (A.3.4.7)

Proof. We first show that A1 ® As is a bounded operator. To this end observe that A; ® Ay can
be written as the composition of the two operators A1 ® 15, and 15, ® As. Hence it suffices to
show that each of these linear maps is bounded. Let v = })'_; v1j ® vo, € Hi ® Hy be of norm 1.
As in the proof of Proposition expand vo, = > cries, k= 1,...,n, where e, ... e, is an

orthonormal basis of Span{vai,...,ve,} and ck1, ..., ckm € K. Equations (A.3.4.4) and (|A.3.4.5)

then entail that
m m
v = Zwu@ei and 1={(v,v)= Zlein
=1 i=1

where wy; = Y0, cpivyy for i = 1,...,m. Hence
m 2 m m
[(A1 @ Tag, )ol* = | >, Ar(wi) @ei| = Y. [Ar(wa)[* < AL D Jwuil* = |Ad|*
=1 =1 =1

so A1 ® Ly, is bounded with norm < |A;|. By symmetry, 15, ® A3 is bounded with norm < | A2].
Hence A1 ® A2 = (15, ® A2) o (A1 ® 1g,) is bounded and

|A1 @ As| < [[As] [A2] -
Therefore, A; ® Ay has a unique bounded extension A; ® As of norm
[ A1 ® Ag|| = | A1 ® As < A1 [ Azl -

Let us show that the converse inequality holds as well. For given ¢ > 0 there exist unit vectors
v; € H;, i = 1,2 such that |A;v;| = | A — W. Then
I(A1 ® A2)(v1 @ v2) | = [|[Arv1 | [|Agva | = [[Ar] |A2] — € .
This implies R
[ A1 ® Az2| = [ A1 ® Az = [As] | A2

and (|A.3.4.7)) follows. Equality (A.3.4.6]) is clear by construction of the Hilbert tensor product.

Next observe that T3¢, ® g, = 14, g 9¢, by definition. Given Hilbert spaces 3, . .., Hg and bounded
linear operators A; : H; — H;19 and B; : H;1o — H;pyg for i = 1,2, the composition (B; ® Bs) o
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(A1 ® As) coincides with (Bj o0 A1) ® (B2 o As) by functoriality of the algebraic tensor product. By
continuity of the operators A1 ® Ay and B; ® Bs and by density of H; ® Hs in Hi ® Hy the equality

(B1® By) o (A1 ® Ag) = (B1 o A1) ® (B 0 Ap)
follows. Hence ® is a bifunctor as claimed. O]
3.4.6 Proposition For every Hilbert space H one has two natural isomorphisms
Uy KQH > H, 2Qu—zv and 50: HAK > H, v®z — zv

called the left and the right unit, respectively. Furthermore, for every triple of Hilbert spaces
Hq,Ho, Hs there is a natural isomorphism, called associator

A9, 36,96, ¢ (H1 @ Ha) @Hz — H1 R (Foa®Hs), (v1 ®v2) @ vz — 11 @ (v2 @ v3)

These data fulfill the so-called coherence conditions that is the pentagon diagram

(H1 ®Ha) ® H3z) ®FHy

a3y 5,93 & ]l/ \9{2@) Ha,Hs,Ha

(3 ® (Fa ®H3)) ®Hy (30 ®Ha) ® (Hz ® Hy)
agfl ,f}fg ®f}f3,f}f4 af}fl’f}{27f}f3®f}f4

H1® (Ha@Hz) ®Hy) ——— Hi ® (Ho @ (Hz ®Hy))
13{1 Ho,H3,Hy

and the triangle diagram

(H1 ®K) ®H, T 1 @ (K® Ho)
Wﬁm ~ %1@@%2
1R,

commute for all Hilbert spaces H1,Ha, Hs, Hy. In other words, the category Hilb endowed with the
Hilbert tensor product & is a monoidal category.

Proof. The category of K-vector spaces with the usual tensor product as tensor functor is monoidal.
Denote the corresponding unit isomorphisms and associator by _u, u_, and a— _ _, respectively.
Then observe that by construction KK =KQH and KK = HRK for every Hilbert space
H. In particular this means that %4 coincides with the unit ug; and 5@ with the unit 5u. Moreover,
both units G5 and 4@ are bounded. Next recall that H; ® Hs is dense in H; ® Ho which by
Proposition implies density of (H; ® Hs) @ Hs and H; ® (Ha @ Hs) in (H1 Q@ Ha) @ Hs
and H1 ® (3{2®9{3), respectively. Similarly one argues that H; ® (Ho ® (Hz ® Hy)) is dense in
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H1 ® (H2® (FH3®FH4)), and so on. Since the associator map asg, 56,9¢; : (Fa @ Ha) ® Hz —
Hi ® (Ha ® Hs) is bounded, it extends in a unique way to a linear bounded map as(, 3¢, 3¢, :
(H1 ®H) ®Hs — Hi ® (Ha ®FHs). Using density, continuity, and commutativity of the pentagon
and triangle diagrams for the tensor product functor one concludes that the coherence conditions for
® with the unit and associator maps _@, @_, and a_,_ _ are satisfied. O

A.3.5. Adjoints of bounded operators

3.5.1 As before, the symbols H and H; with k& = 1,2 always stand for Hilbert spaces over the field
K of real or complex numbers. Several results of this section hold only in the complex case, thouhgh.
Therefore we will be quite precise in stating all necessary assumptions, in particular about the ground

field.
Let A e B(H;,Ho) thatis let A : H; — Hy be linear and bounded. Then the map
ba: Hi x He > K, (v,w) — (Av,w)
is sesquilinear and bounded with norm
[ball = sup { [a(v,w)| | ve I, we I, |w] = o] =1} =[A] .

By Corollary to the Riesz representation theorem there exists a unique bounded linear operator
A* : Hoy — Hy such that

ba(v,w) = (v, A*w) forall ve H;, weH,.

This operator satisfies
| A% = llbal = 1Al - (A.3.5.1)

3.5.2 Definition The unique operator A* € B(JHy, H;) associated to an operator A € B(Hi, Hs)
such that
(Av,wy = (v, A*w) forall ve Hy, we Hy

is called the adjoint of A.

The fundamental property of the adjoint operation is given by the following result.

3.5.3 Proposition The adjoint map * : B(Hy,Hs) — B(Ha,H;) is a conjugate linear isometry
whose square coincides with the identity operation that is A** = A for all A € B(H;,Hs).

Proof. By the proof of Corollary , A*w = (w, A(=))* for all w € Hy. Since the inner product
is linear in the second argument and the operator ¥ conjugate linear, the map A — A* is conjugate
linear in A. By Equation (A.3.5.1)), the adjoint map is an isometry. The relation A** = A follows by
uniqueness of the adjoint and since

(A*w, vy = (w, Av)y forall ve Hy, we Hy . O
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3.5.4 Definition An operator A € B(XH) is called self-adjoint if A = A*, unitary if A* = A1 and
normal if [A, A*] := AA* — A*A = 0.

We note that self-adjoint and unitary operators are always normal, but normal operators do not have
to be self-adjoint or unitary. In the remainder of this section, we gather several results on self-adjoint
and normal operators.

3.5.5 Proposition Assume that the ground field K of the Hilbert space H is the field of complex
numbers. An operator A € B(H) then is self-adjoint if and only if (Av,v) € R for all v e H.

Proof. (=) If A is self-adjoint, then
(Av,v) = (v, A*v) = (v, Av) = (Av,v) ,
which implies that (Av,v) € R.
(«=) Suppose that (Av,v) € R for all v € H. We know
(A(v + w),v + w) = (Av,v) + (Av,w) + (Aw,v) + (Aw, w) . (A.3.5.2)

By assumption, (A(v + w),v + w), (Av,v), and (Aw,w) are all real. This implies that the sum
(Av,w) + (Aw,v) is real as well, so

Jm{Av,w) = =Tm{Aw,v) = IJm{v, Aw) .
Since this holds for all w € H, it holds for iw, too. Thus,
Re (Av, w)y = Tm i{Av, w) = Jm(Av, iw) = Tm{v, A(iw)) = Tm i{v, Aw) = Re (v, Aw) .

Combining the above two lines yields (Av, w) = (v, Aw) for all v,w € H. By uniqueness of the
adjoint this implies that A = A*. O

3.5.6 Proposition Assume that the ground field K of the Hilbert space H is the field of complex
numbers and let A € B(H). If (Av,v) = 0 holds for all v e H, then A = 0.

Proof. Since (Av,v) = 0 for all v € H, equation (|A.3.5.2)) from the proof of Proposition reduces

to
(Av,wy = —(Aw,v) = —(w, Av) = —(Av,w) forallv,we H .

That means that (Av,w) has no real part for all v,w € H. But then fixing v and setting w = Av
implies | Av|? = 0 for all v e H, so A = 0. O

3.5.7 Example The preceding proposition does not hold in the real case. To see this take rotation
by 5:
R_ (C?S 7% - sinﬂér)
sinf  cos %
Then (Rv,v) = 0 for all v € R?, but R is non-zero. Note that the example of the rotation operator

R also shows that the criterion for self-adjointness from Proposition can not be applied in the
real case.
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3.5.8 Lemma (cf. (Hirzebruch & Scharlau, 1991, Lem. 22.4)) Assume that A is a bounded lin-
ear operator on the real or complex Hilbert space H for which there exists a C > 0 such that

[(Av,v)| < Clv|? forallve .

Then
|(Av, w) + (v, Aw)| < 2C||v||w| for all v,w e H . (A.3.5.3)

In case H is a complex Hilbert space one even has the sharper estimate
[(Av, wy| + [{v, Aw)| < 2C|v||w| for all v,w e H . (A.3.5.4)

Proof. We start with the equality

(A(v + w),v +w) + (A(v — w),v — w)y = 2({Av, w) + (Aw, v)) . (A.3.5.5)
By assumption and the parallelogram identity this entails
2[(Av, w) + (Aw,v)| < C (Jv + w|* + v — w|?) = 2C(|v]* + |w]?) . (A.3.5.6)
The claim obviously holds for v = 0 or w = 0, so we assume from now on that both v and w are
non-zero. Then put a = M and replace in (A.3.5.6) v by 2 and w by aw. One obtains

(Av,w) + (Aw,v)] < € <)Z‘2 ¥ ]aw|2> — 20|l

which is the claim in the real case. If H is a complex Hilbert space, let z,y be complex numbers of
modulus 1. In the just proven estimate multiply the left side with |x| and replace w with yw. This
gives

2 Av, w) + o Aw, Y| = [1] - [(Av, g + (Alyw), 0] < 2C]o] ] (A35.7)
Now write (Av, w) = re'? and (Aw,v) = se'¥ with r, s = 0 and ¢,v € R. Then put

€Tr = e—'%(sﬁ‘w)) and y — 6—'%(90—1/})) .

With these values, (|A.3.5.7)) becomes
[{Av, w)| + (v, Aw)| < 2C v |w]|
which was to be shown. O

3.5.9 Proposition IfH is a Hilbert space over the field K of real or complex numbers and A € $B(H)
is self-adjoint, then
lAl = Sup, [CAv,v)] .
Proof. We know
|All = sup [(Av,w)|, (A.3.5.8)

lvl=lwl=1

so we clearly have

sup [CAv, v < [ A]

The other direction follows from Equation ((A.3.5.8) and Lemma since A is self-adjoint. O

113



A.3. Hilbert Spaces A.3.5. Adjoints of bounded operators

3.5.10 Proposition If H is a real or complex Hilbert space and A € B(H), then A* A is self-adjoint
and | A% A| = ]

Proof. For arbitrary v,w € H, we have
(A* Av,w) = (Av, Aw) = (v, A* Aw)
so A* A is self-adjoint. Then

|A*A| = sup  [(A*Av,w)| = sup  [(Av, Aw)| = [ A]*

lvl=lwl=1 lvl=lwl=1

where the last equality is a consequence of the Cauchy-Schwarz inequality and the observation that
for all € > 0 there exists a unit vector v such that (Av, Av) > |A|* —e. O

3.5.11 Proposition Let H be a complex Hilbert space H. If A € B(H), then there exist unique
self-adjoint B, C' € B(H) such that A = B+ iC. Furthermore, A is normal if and only if [B,C] = 0.

Proof. We define

B— %(A+A*) and  C= (A%~ A).

Clearly A = B +iC. Note also that A* = B — iC. Furthermore, by Proposition
1
B* = 5(A*+A) =B

and

C* = —~(A—A*) =C.

i
2
Hence B and C are self-adjoint, so fulfill the claim. Let us show uniqueness. Assume that B’,C’ €
B(H) are selfadjoint and satisfy A = B’ +iC’. Then
B-DB' =B*-B"=(i(C'-C))"=-i(C"-C)=—(B-B).
Hence B = B’ and consequently C' = C’. Finally, we compute
[A,A*] = [B+iC,B—iC] =—i[B,C] +i[C,B] = —2i[B,C] .
This entails that A is normal if and only if [B,C] = 0. O
3.5.12 Proposition If A is a normal operator on a real or complex Hilbert space H, then
[Av| = |A*v| for allve XK .
Proof. Using the fact that A*A = AA*, we compute
|Av|? = (Av, Av) = (v, A* Av) = (v, AA* V) = (A*v, A*v) = | A*|)? .

Taking the square root yields the desired result. O
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A.3.6. Projection-valued measures and spectral integrals

3.6.1 In this section 3 will always denote a fixed complex Hilbert space.

3.6.2 Definition By a projection-valued measure or a spectral measure on a measurable space ({2, .A)
one understands a map E : A — B(H) having the following properties:

(SMO0) For each A € A the operator E(A) is an orthogonal projection that is E(A)? = E(A) and
E(A)* = E(A).

(SM1) E(Q) = idy.
(SM2) For every sequence (A, )nen of pairwise disjoint elements of A one has
a0
E (U An> = S-Z E(An) )
neN n=0

where convergence is with respect to the strong operator toplogy.

3.6.3 Remark Recall that convergence of a sequence of operators (A,)neny © B(H) in the strong
operator topology to some A means that for every v € 3 the sequence (A, v)nen converges in H to

o0
Av. One denotes this by A = s—lirgo A,,. Likewise, B =s->. A,, means that the sequence of partial
n—

n=0

n
sums <Z An> converges in the strong operator topology to some B € B(KH).
k=0 neN

3.6.4 Proposition A spectral measure E : A — B(H) has the following properties in addition to
the defining axioms:

(SM1") E(g) = 0.
(SM2') (Finite additivity) One has for all disjoint A1, Ay € A

E(Al )/ Ag) = E(Al) + E(Ag) .
(SM3) One has for all A1, Ay e A
E(Al M A2> = E(Al) . E(Az) .

Proof. ad[[SM1|

ad|(SM2')
ad|(SM3)| O

115



A.3. Hilbert Spaces A.3.7. Spectral theory of bounded operators

A.3.7. Spectral theory of bounded operators

3.7.1 We now apply the foundations of Hilbert space theory built in the previous sections to spectral
theory. For the moment we will sacrifice generality and work only with bounded linear operators. The
spectral theory of unbounded linear operators will be treated later.

Let us a recall that a linear map A : H; — Hy between Hilbert spaces is continuous if and only if it
is bounded, i.e. has finite operator norm, and that B(%,Hz) is a Banach space with the operator
norm. For the rest of this section, H, Hy, Ho, ... will always denote complex Hilbert spaces and A,
B bounded linear operators. We will also now fix the base field to be complex, i.e. K = C. Last we
agree on writing Iy or just I for the identity operator on a Hilbert space H.

Spectrum and Resolvent

3.7.2 Definition Let A : H — H be a bounded linear operator. A complex number ) is then called
an eigenvalue of A if there exists a nonzero v € H such that Av = Av. For every X € C one defines
the A-eigenspace of A as

Eigy(4) = {ve H | Av = W} c K,

which is clearly a linear subspace of .

3.7.3 By definition it is immediately clear that
Eigy(A) = ker(A — \),

where the A on the right stands for the operator AI. In other words this means that A\ € C is an
eigenvalue of A if and only if A — X is not injective.

3.7.4 Definition Let A € B(H). We make the following definitions.

(i) A regular value of A is a complex number X such that A — \ is invertible.
(i) The set of all regular values is the resolvent of A, denoted o(A).

(i) A spectral value of A is a complex number A such that A — X is not invertible.
(iv) The set of all spectral values is the spectrum of A, denoted o(A).

(v) The point or eigenspectrum of A is the set

op(A) = {A € C | ker(4 — \) # {0}}.

(vi) An approximate eigenvalue of A is a complex number X for which there exists a sequence of unit
vectors (vp,)nen < H such that
lim (A — v, = 0.

n—0o0

The set o, (A) is the set of all approximate eigenvalues.
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3.7.5 Evidently, 0(A) = C\p(A) and 0p(A) < 0ap(A) < 0(A), and these may all be strict inclusions.
Note that A — ) is bounded for any )\ € C, so the open mapping theorem ?? implies that (A —\)~!
B(H) when A € g(A). We call the map

Ru(A) : o(A) — B(3), Ry(4) =(A-N""

the resolvent of A, not to be confused with the resolvent set p(A). To keep the notation clean, we
often briefly write Ry for R)(A) and leave implicit that Ry depends on A.

First, we prove some topological properties of the spectrum and resolvent. Recall the following lemma,
which generalizes the geometric series.

3.7.6 Lemma (Carl Neumann) Let A e B(H). If |A| <1, then I — A is invertible,
a0
-1 _ Z A
n=0

and
1

I-A) Y < —.
H( ) H 1—[A]

Proof. Since |A| < 1 and ||A™| < |A|™ by submultiplicativity of the operator norm, we know
> o |A™| < oo. This implies that the family (A™),en is absolutely summable, so >, A™ exists.
Furthermore, for every N € N we have

N N N N+1
(I—A)) A" = <Z A") (I—A)=> A"— > A" =T- AN+,
n=0 n=0 n=0 n=1
which implies that
N N
lim (I — A A" =1 A" | (I —-A) =1
i (1= 4) ), A" = Jim, ( PN ) -4

By continuity of multiplication in B(H) one gets

(I-A) i (ZA”)

which proves that I — A is invertible and (I — A)~! =Y A"

Finally, one concludes by the triangle inequality and submultiplicativity of the operator norm

|7 =7 < Z A < Z |Al" !AH

3.7.7 Proposition Let A € B(H).

(i) For any A€ o(A), one has
BHR)\H—I(A) (@ Q(A) .
Hence, o(A) < C is open.
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(i) The spectrum o(A) is compact and

O'(A) C BHAH (0) .

(iii) If the complex number \ satisfies || > || A

, then \ € p(A) and

o0
_ Z A"l gn 7
n=1

where convergence is with respect to the operator norm.

Ry =—

>| =

Proof. ad (i). Fix A€ o(A) and set r = |Ry| . Let p € B,()\). Then
[ = M BAl = [ = Al RA| < 1.

Thus, by Lemma one knows that I — (u — A)R), is invertible. Since A — X is invertible, the
composition
(A= N (T - (1= NRy) = A—p

is invertible, which proves that u € 9(A). Hence o(A) is open.

ad (ii). Since p(A) is open, the complement o(A) = C\p(A) is closed. Furthermore, if |A| > |A4],
then H)\_lAH <l,sol— A'A and hence A — X are invertible by Lemma . This implies that
A€ o(A), so a(A) = Bjy(0). Since o(A) is closed and bounded, it is compact.

ad (iii). If |\| > ||A|, then I — A~ A is invertible by Lemma and

w
(I=ATta)t = amar
n=0
Since —A\(A —\)~"! = (I = A71A)~!, one obtains

o0 o0
Z AAY = Z )\—n—lAn,
n=0 n=1

as desired. ]

Ry =—

>| =
>| =

Next, we prove some algebraic properties of the resolvent. Hereby, [A, B] = AB — BA denotes the
commutator of two operators, as usual.

3.7.8 Proposition Let A, B € B(H). Then the following holds true.

(i) The resolvent commutes with the operator which means that

[A,R\(A)] =0 forall \e p(A) .

(i) The values of the resolvent commute with each other that is

[RA(A),Ru(A)] =0 forall A\, e o(A) .
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(iii) (First resolvent identity) For all A\, i € o(A)

RA(A) = Ru(A) = (A = ) BA(A)Ru(A) .

(iv) (Second resolvent identity) For all A € o(A) n o(B)
RA\(A) — Rx\(B) = R\(A) (B — A) R\(B) .
Proof. ad (i). Obviously [A,A —\] =0, so
0= R)[A, A — ARy = R\A — AR,
as desired.
ad (iii). We compute
(B — Ru)(A—p)(A=A) = (RxA — pRy) (A= A) — (A=)

= (A—p)Ra(A—X) - (A—-])

=A- 122
where we used part [(i)] to commute R past A in the second step. Now multiplying both sides with
R\R,, from the right yields the desired equality.
ad (ii). For A = p, one obviously has [Ay, A,] = 0. For A # y, one concludes from [(ii)]

R,—Ry Ry—R
R, R, = —F = E=R\R
RN u_)\ )\_M Ay,

so [Ry, R,] = 0 for A # 1 as well.
ad (iv). The last equality follows by

RA(A) (B — A)RA(B) = Ra(A) (B— ) — (A= X)) Ra(B) = Ra(A) = RA(B) . [

The resolvent R.(A) also has some nice analytic properties which we are going to prove next.

3.7.9 Proposition The resolvent Ro(A) : o(A) — B(H), A — Ry is continuous and complex
differentiable with derivative given by

R,—R

Ru(A) : o(A) — B(H), A — lim A _ g2

A=A
Proof. Fix A€ o(A) and € > 0. Let 0 < |u — A| < 0, where

1) m'n< ° ! >
= mi , .
2|RA|? 2[R

Note that 1 € o(A) by Proposition Moreover, (11— AN)Rx| <1, so I —(u— ARy is invertible
with norm less than (1 — |[(u — A\)Ry[)~! by Lemma [3.7.6] Now observe that the first resolvent
identity can be rearranged to

Ry = Ra[l = (n—= MR "
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Hence

IR, — Rl < | — Al |Rul | RA|
= MBI (T = (u— MR
i — ARy

1= (= MRy

e/2

1—1/2

<
<

This proves that A — Ry is continuous.

As for complex differentiability, we simply use the first resolvent identity and continuity to conclude

R, — Ry
1i K = lim R,R) = R2.
,ug ,u—)\ pliri\ A A L]

3.7.10 Proposition Let A € B(H). Then ARy — —I as |\| — . In particular, Ry — 0 as
|A| — 0.

Proof. Fix e > 0. For || > | A|, we have by Proposition

o0
ARy =—T— > A T"A™
n=1
Since
Al

TLATL
S -4

one sees that ARy — —I as |\| — . S|m||ar|y, for [A| > | A| one has

L4
R )\ " n \7 ’
INE |MZH S RN

which shows that Ry — 0 as |A\| — o0. O
3.7.11 Proposition For all v,w € H, the map
(Re(A)v,w) : 0(A) = C, A= (Ryv,w)
is holomorphic with derivative
(Re(A)v,w) : 0(A) — C, X — (R3v,w).
Proof. Given X € o(A), we compute

lim (Ruv,w)y — (Ryv,w) ~ lim {(p = NRuR v, w)
n—A o — A n—A n— A

= hm<R Ryv,w) = (R3v,w),

where we have used the first resolvent identity in the first step and continuity of the inner product in
the last. O
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3.7.12 Proposition The spectrum of an operator A € B(3H) is nonempty.
Proof. Suppose o(A) = &, hence p(A) = C. The map
C—-C, A~ {(Ryv,w)

then is entire for every v, w € H. Furthermore, one has for |v|, |w| < 1

(B, w)| < | Bl |Jv] w] < [RA]l -

Since A — ||R,| is continuous and |Ry| — 0 as |A\| — oo, one sees that |R)| is bounded. Hence
(Rev,w) is a bounded entire function, which by Liouville's theorem implies that it is zero for every
pair v, w € H with |v|| = |w| = 1. This entails that Ry = 0 for every A € C, which is a contradiction
to Ry being invertible. Hence o(A) # &. O

A.3.8. Unbounded linear operators

3.8.1 In this section let V, W always denote Banach spaces over the field K = R or K = C. The
symbols H, Hy, ... will always stand for Hilbert spaces over K.

3.8.2 Definition By an unbounded K-linear operator or shortly by an unbounded operator from V
to W we understand a linear map A : Dom(A) — W defined on a K-linear subspace Dom(A4) < V.
As usual, Dom(A) is called the domain of the operator A. The space of unbounded K-linear operators
from V to W will be denoted £x(V, W) or just £(V,W).

3.8.3 Remark In this work, the term “unbounded” is meant in the sense of “not necessarily bounded".
Sometimes we just say linear operator or even only operator instead of “unbounded linear operator”.

3.8.4 Observe that besides the domain Dom(A) of an unbounded operator A € £(V, W) the kernel
Ker(4) = {veV|Av=0}cV,
the image
Im(A) = {we W |FveDom(A) : w=Av} c W,
and the graph
Gr(A) = {(v,w) € Dom(A) x W | w = Av} € V x W

of A are all linear subspaces. We will frequently make use of this.

3.8.5 Definition An unbounded operator A € £(V, W) is called densely defined if Dom(A) is dense
in 'V, and closed if the graph Gr(A) is closed in V. x W. The operator A € £(V, W) is called closable
if the closure Gr(A) is the graph of an unbounded operator from V to W.

An operator A € £(V, W) is called an extension of B € £(V,W) if Gr(B) < Gr(A). One writes in
this situation B < A.
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A.4.1. Infinite tensor products

4.1.1 Infinite tensor products of Hilbert spaces were introduced by von Neumann| (1939)). They were
motivated by mathematical physics where one needs to describe quantum systems with infinitely many
degrees of freedom, see e.g. [Emch| (2009)); Bratteli & Robinson| (1997)). The original construction
of infinite tensor products was generalized to von Neumann and C*-algebras by (Guichardet (1966),
Blackadar (1977)), and others. Meanwhile, the topic has been studied in quite some detail in the
operator algebra literature, see e.g. [Nakagami| (1970a,b); |Stgrmer (1971). A purely algebraic or
better categorical approach allowing the construction of infinite tensor products of modules over a
given commutative ring has been given in (Chevalley, 1956, Sec. I11.10). The work [Ng (2013) is also
in that spirit. We will essentially follow |Chevalley| (1956) and construct the infinite tensor product as
a module universal with respect to multilinear maps. First we present the main algebraic construction,
then we explain some of the subtleties which distinguish infinite from finite tensor products, and finally
we construct infinite Hilbert tensor products and infinite tensor products of C*-algebras.

4.1.2 Let R be a commutative ring and (M;);c; a possibly infinite family of R-modules. Consider
[ 1;e; Mi, the product of the family (M;);c; within the category of R-modules. For each j € I let
7j ¢ | Liey Mi — M; denote the natural projection onto the j-th factor and ¢; : M; < [[..; M; the
uniquely determined natural embedding such that

el

idpg, for i =j and
ok 0 else

Given an R-module N one then understands by a multilinear map from ||
[lie; Mi — N such that for each j € I and x € [],;
m — f(tj(m) + ) is linear. The set of multilinear maps from [[,.; M; to N will be denoted by
i)ﬁ[in(l_[id MZ-,N). It carries a natural structure of an R-module given by pointwise addition of
multilinear maps and pointwise action of a scalar on a multilinear map that is by

e M; to N amap f:
M; with 7j(z) = 0 the map M; — N,

f+g= (HMZ’SHC'_’JC@)"‘Q(QU)GN) and rf = (HMZ‘”H”[(””)EN>

el el

for all f,g € Mlin(]],.; M;,N) and r € R. Since for j € I and z € [[,.; M; with 7j(z) = 0
the maps M; — N, m — (f + g)(t;j(m) + z) = f(,;(m) + x) + g(¢;(m) + ) and M; — N,
m — 7f(¢;(m) + x) are linear by assumption on f and g, the maps f + g and rf are multilinear
again, so Sﬁlin( [ Ler M, N) is an R-module indeed with zero element the constant function mapping
to0e N.

iel
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4.1.3 Remarks Before proceeding further let us make several explanations concerning the notation
used.

(a) The space of multilinear maps im[m(]_[ - Mz,N) actually depends on the family (M;);c; and
the R-module N, so in principle one should write Sﬁlm((Ml)ZE[, N) instead of Dﬁ[m(ﬂze[ M;, N).
Nevertheless we stick to the latter notation since it is closer to standard notation for linear maps and
since it will not lead to any confusion.

(b) In case the index set I has just two elements ij,i3, one calls a multilinear map [[,.; M,
M;, x M;, — N a bilinear map. If the cardinality of I is 3, one sometimes calls a multilinear map
[lic; Mi — N a trilinear map.

(c) In the following, when saying that (I;).ca is a partition of the set I we mean that each I, is a
non-empty subset of I, that I, n I, = J for a # b and that |J,.4 Io = I. The empty family is
regarded as a partition of the empty set.

(d) We will frequently use in this section the same symbol for maps with the same “universal” properties
despite those maps might be strictly speaking different. For example, 7 will stand for the canonical
projections [ [;c; M; — My, and [[;c; M; — My whenever k € J < I. Likewise we use the same
notation for the two canonical embeddings My, — [],.; M; and My — [[;c; M; defined in
and denote them both by ¢.

4.1.4 Lemma (cf. (Chevalley, 1956, Sec. 111.10, Lemma 1 & 2)) Assume that (M;);e is a fam-
ily of R-modules, N an R-module, and f : [ [,.; M; — N a mutilinear map.

(i) Ifg: N — N'isan R-module map, then go f : [[..; M; — N’ is multilinear.

el

(i) Let J < I be non-empty, y = (yi)icr\s an element of the product HieI\J M;, and 15, :
[Ljes Mj — [1ic; Mi the unique map such that for all x = (x;)jes € (M;)jes and k € I

x forke J,

i © Ly (%) = {yk for ke I\J.

Then the composition fo vy, : Hjej M; — N is multilinear.

(iii) Let (I4)qea be a partition of the index set I which is assumed to be non-empty. Let (Ng)qea
be a family of R-modules, (ga)aca @ family of multilinear maps g, : [[;e;, Mi — Na, and
h:1],ea Na = N multilinear. Define g : | [;c; Mi — | [,c4 Na as the unique map such that

el

mog=gpomy forbe A,

where m; for J < I as on the right side stands for the projection my : [ [;c; M; — [];c; M;
uniquely determined by mj o wy = m; for all j € J. Then the composition hog:|[;c; M; —» N
is multilinear.

el

Proof. ad (i). Let j € I and = € [ [,.; M; with 7;(x) = 0. By multilinearity of f and linearity of g,
the map M; — N’, m — gf(tj(m) + x) then has to be linear, hence g o f is multilinear.

ad (ii). Let j € J and € [[,c; M; with mj(x) = 0. Then 7;(tyy(x)) = 0 and fr,(¢;(m) +
x) = f(tj(m) + vyy(x) for all m € M; by construction of ¢;,. Hence the map M; — N, m —
friy(tj(m) + x) is linear by multilinearity of f. This proves that f o ¢z, is multilinear.
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ad (iii). Given j € I let b be the unique element of A such that j € . Assume that z € [[,.; M;
with 7;(z) = 0. By construction one has 7;(7y, (x)) = 0. Now let y € [, 4 N, such that

) 0 for a = b,
7a(y) =
Y ga7r,(x) fora #b.

One then obtains for m € M;

ag(1j(m) + ) = {gbmb(éj(m) + ) = gp(t;(m) + 7, (x)) for a =b,

9a71, (%) = Ta(y) for a # b.
Hence
hg(vj(m) +x) = h(Lb(gb(Lj(m) + 7, (ac)) + y) ,
and the map M; — N, m — hg(tj(m) + z) is linear as the composition of two linear maps. O

4.1.5 Lemma Assume to be given a non-empty family of R-modules (M;);c; and a partition (1) aec
of the index set I. Then there exists a natural ismorphism

KVI’A:HM"—)HHMZ'

el acAiel,

uniquely determined by the condition that w, o kr o = 7y, for all a € A.

Proof. By the universal property of the product the R-module map & =t a : [ [;c Mi — [oen [ Lics, Mi
exists and is uniquely determined by the requirement that m,0k7 4 = 7y, for all a € A. Naturality also
follows from the universal property of the product. It remains to show that x is an isomorphism. By
construction, 7;(x) = mmak(x) = 0 for all i € I and a(i) € A such that i € I,(;), hence z = 0. So x
is injective. It is also surjective. To see this pick x4 € [ [;c;. M; for each a € A. With a(i) for i € I de-
fined as before put 2 = (m;(4(;))) ;- Then, by construction, mimak(z) = mime () = mi(x) = mi(24)
for all a € A and i € I,, hence (mak(x)), ., = (Ta)aca and & is surjective. O

4.1.6 Proposition (Exponential law for multilinear maps) Let (M;);er be a family of R-modules
over a commutative ring R, N an R-module, and assume that J — I is a non-empty subset such
that the complement K = I\J is also non-empty. Then the map

1. : Miin (H M, Mlin (H Mk,N>> — Mlin (H Mi,N> :

jed keK el

[ (H M; 3 (zi)ier = [((x5)jer) (2r)kek) € N)

iel
is an isomorphism which is natural in (M;);er and N.

Proof. We first show that 1 = 7y s is linear. To this end let
fg € Miin (TT,e, M;, Miin ([Toere My, N) ) and 7 € R. Then, for all @ = (w)icr € [Te; Mi,

(n(f +9) (@) = (f + 9) ((x))jer) (@r)rer) = (F((x5)jes) + 9((x5)je)) (Tr)rek) =
= f((z5)jes) ((@r)rer) + 9((z5)jer) (@)rer) = (0f) (@) + (ng) (@) = (nf + ng)(x)
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and

(n(r ) (@) = (rf)((xg)jer) (@rrex) = (rf(x5)5e0) (@r)rer) = r(F(25)jer) (@r)rer) ) =
=r(nf(z) = (r(nf))(z) .

Hence 7 is an R-module map.

Next we show that 7 is an isomorphism by constructing an inverse. Given f € EITZ[in(H

M;, N)
we define f%: Mlin([;c; M;) — Miin([[ex My, N) by the requirement that

el
FW)(2) = f(ayz) forall y = (y;)jes and 2z = (2p)rex |

where z, . is the element of [ [,.; M; uniquely determined by

() 2) y; for i€ J,

T\ Ly.z) =
v z; for ie K.
One thus obtains an R-module map
(=)% ; : Miin (H Mi,N> — Mlin (H M;, Mlin (H Mk,N>> . fe ft
el jeJ keK

which by construction is inverse to 7y, ;.

Naturality of 57y in (M;) ey and N is clear by definition. O

4.1.7 Definition Let (M;);c; be a family of R-modules over a commutative ring R. By a tensor
product of (M;);cr one understands an R-module (X),.; M; together with a multilinear map 7 :
[Lic; Mi = &®);c; M; such that the following universal property is fulfilled:

(ITensor) For every R-module N and every multilinear map f : [ [,.; M; — N there exists a unique

R-module map f: ®,.; M; — N such that the diagram

M —Ls N
el
|
M;
el

commutes.

The linear map f making the diagram comute will sometimes be called the linearization of the
multilinear map f.

Given a tensor product ((&X);c; M;,7), we will usually denote the image of an element (z;)ic; €
[ Lie; Mi under the map 7 by ®jer;.

4.1.8 Remarks (a) Strictly speaking, a tensor product of a family (1;);er of R-modules is a pair
(@ie] M;, 7') having the above properties. By slight abuse of language, one usually denotes a tensor
product just by its first component, the R-module X),.; M;. When helpful for clarity, the associated
map 7 : [ [;e; Mi = &);e; M; will be denoted by 7(5y,),., or by 7.

el
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(b) In the case where the index set I of the family (M;);es is infinite, one sometimes calls (X)
an infinite tensor product.

zeI

4.1.9 Theorem Let (M;);cr be a family of R-modules over a commutative ring R. Then the following
holds true.

(i) A tensor product (X),.; M; of the family (M;)icr exists and is unique up to isomorphism. If I is
the empty set, then X)..; M; = R, if I contains a single element i, then X),.; M; = M;_.

el iel

(ii) If (Ni)ier is a second family of R-modules and (f;)icr a family R-module maps f; : M; — Nj,
then there exists a unique linear map X),; fi : Q,e; Mi — &),y Ni making the d/agram

el el
T
l ® fi
el
& M;
el

commute, where f : [ [,.; M; — Q,c; Ni is the multilinear map (x;)ier — ®ier fi(x;).

el

(iii) Let J < I be a finite non-empty subset set such that M is isomorphic to R for all j € J. Denote
for each j € J by 1; the image of the unit 1 € R under the isomorphism R =~ M; and by 1; the
family (1) jeJ- /\/Ioreover for every family y = (y;)jer let 1y, : HieI\J M; — [1,c; M; be the
map which associates to x € [ [;c ; M; the family (x;)ier such that x; = m;(z) for i € I\J and
x; = y; fori e J. Then the linearization 71 : ®ieI\J M; — K,c; M; of the multilinear map
TrOLy1, HieI\J M; — &®),c; M; is an isomorphism.

Proof. ad (i). By its universal property, the tensor product of the family (M;)er is uniquely deter-
mined up to isomorphism. Hence it remains to show the existence of the tensor product. To this end
consider the free R-module over the set [ [..; M; and denote it by F. Let 0 : [ [..; M; — F be the

el
canonical injection and U be the submodule of F' spanned by the elements

el

8(ej(ry; + 2j) + (xi)ier) — 76 (15 (ys) + (@)ier) — 0 (1i(25) + (Ti)ier)

where j € I, y;,2; € M;, r € R, and (x;)ier € w;l(O). Then put &),.; M; = F/U and define
7 as the composition of the canonical projection 7 : F' — X),.; M; with § : [[..; M; — F. By
construction, 7 is multilinear. Assume that NV is an R-module and f : [[..; M; — N is a multilinear
map. By the universal property of free R-modules, f lifts to a unique R-linear map f’ : F' — N such
that f = f’ 0. By multilinearity of f, the map f’ vanishes on the submodule U, hence descends
to an R-linear f : X),.; M; — N such that f/ = fonm. Hence f = f'fod = fomod = for.
By surjectivity of 6 and uniqueness of f’, f is the unique R-linear map satisfying f = f o 7. Hence
(@ie] Mi,T) is a tensor product of the family (M;)es.

In case I = (¥, the cartesian product [ [,.; M; is final in the category of sets, hence consists of only one
element x only. This means in particular that for an R-module N any map f: [[,.; M; = {x} > N
is multilinear. Put (X),.; M; = R and let 7 : {x} — R be the map x — 1. Now let f : R — N be the
unique linear map such that f(1) = f(x). Then f = f o7 and the pair (R, 7) fulfills the universal
property of the tensor product.
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If I is a singleton with unique element iy, then [[,.; M; = M;, and a map f : [[,.; M; — N is
multilinear if and only if f as a map from M;  to N is linear. This implies that the pair (M;,,idxs, )
then is a tensor product for the family (M;);e;s.

ad (ii). This is an immediate consequence of the universal property of the tensor product.

ad (iii). We construct an inverse to 71, : @ieI\J M; — ®e; M;. Let © = (2;)ier be an element
of [ [,e; M; and put

T) = (H %’) - QienJTi (H mj> g (Ti)iens) -
jeJ jeJ
Then A [, M; — ®ie\J M; is multilinear by construction, hence factors through a linear map

At ®yer Mi — ®ZeI\JM By definition, X is a left inverse of 71,. It is also a right inverse since
for all (x;)icr € [ [;,c; Mi by multilinearity of 77

Lyl 0 Ao TI ((Ucz)zel ((H $g> '®¢e1\ﬂi) (H $g> LIy ©TN\J ((xi)ieI\J)) =

jed jed

= <H f’fj) ) (TI EEFAY ((sz‘)iez\J)) =TI Ol (x))jes ((fb’i)zel\J) = 711 ((%)ier)

jeJ

and since by construction of the tensor product the image of 7; is a generating system for the
R-module & O

'LEI

4.1.10 Lemma Assume that (M;);cr is a finite family of R-modules such that for every i € I a
generating set S; of the R- modu/e M; has been given. Then the set S = 7 (] [,.; Si) is a generating
set of the tensor product (X)

iel

7,61

Proof. By construction of the tensor product in the proof of Theorem it is clear that a generating

set of (X),.; M; is given by the set of elements of the form ®;crz; where (;)ier € | [,c; M;. Each of
the x; can now be represented in the form
T = Z TikSik with Tily---Tin; € R, Sily--+58in; € S; .
k=1
Hence, by multilinearity of 7 and with I = {i1,...,i4},
ni, Mgy
®icrzi = T ((%i)ier) Z S ik, e Tigke, - T ((Sik)ier)
=1 k=1
S0 ®jecrx; is a linear combination of elements of S and the claim is proved. O

4.1.11 Lemma Let (M;);cr be a family of R-modules, (I,)q.ca a finite partition of the index set
I, and N an R-module. For a € A put N, @iela M; and let 7, : Hie[a M; — N, denote the
canonical map. Assume that f : [, 411 ; — N is a map which is componentwise multilinear
in the following sense.

i€l,
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(CM) Letbe A andy = (Ya)aca € [ luen | lies, Mi a family with y, = 0. If for all j € I, and families
x = (2;)icr, € Hielb M; with z; = 0 the map

Mj — N, m — f(u(;(m) + ) +y)

is linear, then f factors through (7a)aca : [ laca I licr, Mi = [laca Na- More precisely, there
exists a unique multilinear map f : [[,c4 No — N such that

f = 70 (Ta)aeA .

Proof. We prove the claim by induction on the cardinality of A. If Ais asingleton, then [ [, .41
canonically coincides with [ [,.; M; and f : [ [;c;. M,

erty of the tensor product there exists a unique ||near map f : N, — N such that f = for,.

zeIa
; — N is multilinear, hence by the universal prop—

Now assume that the claim holds whenever the cardinality of the index set A is < n for some n € N*.
Assume to be given initial data (M;),e; and N, a partition (I;)qea of A with [A] = n + 1 and
componentwise multilinear map f : [[,callic;, Mi — N. Fix a € A and put B = A\{a}. Let
T = (zi)ie1, € [ L;e;, Mi and T be the element of [ [, 4 [ [;c;, Mi such that

iEId

- r ford=a,
7Td(37)2{

0 else.

The map
fo [T M= N,y fsly) +F)

beB i€l

then is componentwise multilinear. Hence by inductive assumption there exists a unique multilinear
map fz : [[pep No — N such that f, = f; o (7)pep. By assumption on f the map [[,.;, M; —

Map (HbeB [ Lier, Mi, N), x — [ is multilinear which implies multilinearity of

i€lq

f.:HMi—>2m[in<HNb,N>, T Iy

i€ly beB

Let F' : Ng — 9Mlin (] [,c5 No, N) be its linearization. Application of the exponential law for
multilinear maps, Proposition now gives a multilinear map 7(F) : [[4eq Na — N which we
denote by f. Given a family (x4)g4ea of families x4 = (x;)icr, one checks

T ((ra(24)) 4o y) = F(7a(za)) ((1o(26)) o) = Fro (16(28)) 1 g) = Fra (@)1eB) = f ((Ta)dea) -

Hence f o (T4)gea = f. To finish the induction step it remains to prove uniqueness. So let g :
[l4ea Na — N be another multilinear map such that go (74)gea = f and consider the induced linear
map g = n71(g) : Nu — Mlin([ ;e No, N). Then for every z € [,.; M; the relation

i€l,

G (1a(2)) o (Th)pen = fo = [2 0 (To)oeB

is satisfied. Hence g*(7(z)) = f, for all z € [ Licz, M which entails that g coincides with F. By
Proposition one obtains § = f. This finishes the induction step and the lemma is proved. [
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4.1.12 Proposition Let (M;);c; be a family of R-modules and (1,).ca a finite partition of the index
set I. Then there exists a natural isomorphism

Oé]7A : ®Mz_’ ®®Mz

el acAiel,

Proof. Put Ny = ;. M; for a € A and let 7, : [[;c; M; — N, be the canonical map to the
tensor product. Let 74 : [[,cu Vo = @ yea Na be the canonical map to the tensor product of the
modules N,. Define 77 4 : [ [,c; Mi — [ [,c4 Na as the unique map so that m, 077 4 = 7,077, for all
a € A. By construction 77, 4 = (Ta)acao k1A, where ki a = [ [ie Mi — [luea [ Lies, Mi is the natural
isomorphism from Lemma [4.1.5] The composition 74 © 77, 4 then is multilinear by Lemma [4.1.4|[(iii)]
hence factors through a linear map a4 : Q,;c; Mi — &4 Na that is

TA © (Ta)aecA © KI,A = Q[ AOT] . (A4.1.1)

Naturality of ay 4 in (M;)er is clear by definition so it remains to construct an inverse to ay 4. Con-
sider the composition 77 0 k™1 : [],c4 Hzela i — e Mi. Assume that a € A and (yp)pea\(a} €

[ Tveafay I Licy, Mi have been chosen. Let y, € Hle[ M; be 0, put § = (ya)aea € [ luea [ lics, Mi,
and let y € HZE[M be the family such that m;(y) = m;(y,(;)) for all i € I, where a(i) denotes

the unique element of A such that i € I,;). In other words let y = k~1(¥). For every j € I, and
T = (2;)ie1, € [ Lje;, Mi with m;(z) = 0 the map

M; — Q) M;, m— 106" (ta(t;(m) + 2) +9) = 77 (1;(m) + 11, () +y)
iel
then is multilinear since 77 is multilinear and 7;(cz, () + y) = 7;(z) + 7j(ya) = 0. Hence 770 k™ *

is componentwise multilinear and therefore, by Lemma [4.1.11} factors through the map (74)aca :
[Tocallicr, Mi — [ s Na which means that

okt = ALLA© (Ta)aea (A4.1.2)

for some uniquely defined multilinear map Ar 4 : [[,c4 Na = &,c; M. Let

el
A4 (X)) Ny — (X)M;
acA el

be the |inearization of )\IA We claim that A7 4 is inverse to oy 4. By definition of A 4 and

Egs. (A.4.1.1)) and ( one concludes

A A0 AOTI =A[AOTAO (Ta)acA © K1 A = A1.A° (Ta)acA O KIA =TT -

Since the image of T[ generates &);e; Mi as an R-module, A; 4 has to be left inverse to as 4. Using

Egs. (A.4.1.1)) and ( again compute

S -1
1A 0 AAOTAO (Ta)aed = @1,A O AL,A O (Ta)acd = Q1AOTAO KL 4 = TA O (Ta)aeA -
Since by Lemma [4.1.10| the image of 74 © (74)aca generates (X),. 4 ®z‘e[a M;, the equality

ar A O)\IA = 1d®a€A®

zeIa

follows and the proposition is proved. O
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4.1.13 Proposition and Definition Let (A;);c; be a family of R-algebras. Then the tensor product
A = Q),c; Ai carries in a natural way the structure of an R-algebra where the product map is defined
by

T AX A A (®ier0i, ®ierbi) — Qier(a; - bi) -

In case each of the algebras A; is commutative, then A is commutative as well. Likewise, if each A;
is unital and 1; denotes the unit element of A;, then A is unital with unit given by 1 = ®;er1;. One
calls A the tensor product algebra of the family of algebras (A;)icr.

Proof. The map

H Ai = A, (aik) G perx2y — Qier(ain - ai2)
(i,k)elx{1,2}

is multilinear by bilinearity of the product maps on the A; and multilinearity of 77, so factors through
alinear map p : A® A ~ ®(i7k)dx{172} A; — A. Composition of p with the canonical bilinear
map A x A - A® A gives the product map - : A x A — A and shows that the product on A is
well-defined. By construction, the product map - is bilinear. Given ®;cra;, Qicrb;i, Ricrc; € A one
computes

(®ier a; - Qierbi) - ®ierci = Qier((ai - bi) - i) = Qier(a; - (bi - ¢;)) = Qierai - ( Rier bi - iercs) -
This entails that the product on A is associative. In the same way one shows that A is commutive

respectively unital if each of the A; is. O

4.1.14 As we have seen, the infinite tensor product construction works well for objects of algebraic
categories like R-modules, vector spaces or R-algebras. As soon as a topologies compatible with the
algebraic structure come in it becomes difficult and sometimes even impossible to construct or even
define
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A.5.1. Pro-manifolds

A.5.2. Hilbert manifolds

5.2.1 In this section we will describe several examples of Hilbert manifolds.

5.2.2 Example Let H be a Hilbert space over the field K of real or complex numbers and w : H — R
a continuous nonzero real linear form on H. Then the sphere

S(KH) = {U e X ’ [v|| = 1}

is a real analytic Hilbert manifold modelled on the real Hilbert space ker w. The sphere has tangent
bundle
TS(H) = {(v,w) € S(H) x H | Re(v,w) = 0} .

A.5.3. The GralBlmann manifold of a Banach space

5.3.1 Throughout this section we denote by E a Banach space over the field K = R or = C. The
main object of study of this section then is the space GE of closed K-linear subspaces of E. It is
called the GraBmann manifold or GraBmannian of E. Let us equip GE with a natural topology by
defining a metric on it. For elements V, W € GE, the gap distance dg.p(V, W) between V and W
is defined as the Haudorff distance of their respective closed unit balls By and Byw. More precisely
that means

’UE@V we@w

dgap(V, W) = d(By, Bw) = max { sup d(v,Bw), sup d(w,IB%V)} , (A.5.3.1)

where, as usual, d(v, B) = ing |v — w| denotes the distance between a point v € E and a closed
we
B cE.

5.3.2 Lemma Let . B
dgap(V, W) = sup d(v, Bw)

’UEE\/
denote the directed or one-sided gap between V, W € GE. Then the following holds true.
() dgap(0,V) = dgap(V,0) = 1 whenever V +# 0.
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-

(i) dgap(V, W) =0 if and only if V.c W.
(iii) For all x € E, B B _
d(z,By) < d(z,Bw) + dgap(W, V) .

Proof. @ follows immediately by definition and l@] holds true since d(g@w) = 0 if and only if
v € Bw. It remains to show . To this end let x € E, v € By and w € By. Then, by the triangle
inequality for the distance d: E x E - R, (z,y) — |z —y

d(z,v) < d(z,w) + d(w,v) .
This entails, by taking the infimum with respect to v € By,
d(x,By) < d(x,w) + d(w, By) < d(z, w) + dgap(W, V) .
Since w € By was arbitrary, follows. O
5.3.3 Proposition The gap distance on the GraBmannian GE of a Banach space is a metric.

Proof. By definition, the gap distance is symmetric. By [(ii)] of Lemma([5.3.2] one has dg,p(V, W) = 0
if and only if V. = W. It remains to show the triangle inequality. Let V, W, X € GH and use in
the preceding lemma to verify

—

dgap(XaV) = Ssup d(fL‘»EV) < sup d($aEW) + Jgap(wav) < C@ap(X»W) + Jgap(wav) s

zeBx €Bx
dgap(V, X) = sup d(v, Bx) < sup d(v, Bw) + dgap(W, X) < dgap(V, W) + dgap(W, X) .
UG@V ’UEE\/
This entails the triangle inequality for dgap. O

5.3.4 Recall that to every closed linear subspace V. < H of a Hilbert space H there exists a unique
orthogonal projection Py : H — H whose image is V. The kernel of the projection Py coincides with
the orthogonal complement V+. One thus obtains a canonical embedding of GIH < B(JH). The
restriction of the operator norm distance to GH endows GH with another metric which we denote

by ¢.
5.3.5 Proposition ((Akhiezer & Glazman, (1993, Sec. 34)) For every Hilbert space H the metric
§:GH x GH > R, (V,W) — |Py — Py

coincides with the gap metric dgap : GH x GH — R. Moreoever, for all V,W € G,
(i) dgap(V,W) <1,

(ii) dgap(V’W) = H(I - PW)PV
(iii) dgap(V, W) = max {|(I — Pw)Pv|, | (I — Py)Pwl} -

, and
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Proof. First note that

|(I = Pw)Py| = sup v — Pwv| = dgap(V, W)

’UEBV

since d(v, W) = |v — Pwu| for all v € By by the orthogonal decomposition theorem, [3.2.3] This

proves [(ii)] and [(iii)} Next observe that
Py — Py =Py(I - Pw) — (I — Py)Pw .
By orthogonality of the images of Py (I — Pw) and (I — Py)Pyw this implies for all z € H

|(Pv = Pw)a|? = | Py(I = Pw)a|® + (I — Pv) Pwz|® <

(A.5.3.2)
< (I = Pw)z|? + | Pwz|? = [|*,

hence
5(V,W) = |Py — Pw| < 1. (A5.3.3)

One also obtains

§(V, W) = sup [[(Py — Pw)z| = sup /[ Pv(I = Pw)z[? + (I — Pv)Pwz[?.  (A53.4)

CEEIB}( Z‘EB:}C

By restricting z to the closed ball of W this formula entails

3(V,W) = sup |(I — Py)Pwaz| = sup [(I - Py)a| = dgap(V, W) .

JBGBW Z‘GBW

By switching V and W in (A.5.3.3)) one gets

3(V, W) = sup (I — Pw)Pyvz| = sup |(I — Pw)z| = dgap(W, V) .

zeBy zeBy
Consequently,
SV, W) = dgap(V,W) . (A.5.3.5)
Let us show that
IV, W) < dgap(V,W) . (A.5.3.6)

To this end observe that for all = € By by and P\%V = Py

—

[(I — Py)Pwz| < dgap(W, V) - | Pwzl (A.5.3.7)
Moreover,

|Py(I — Pw)z|* = (Py(I — Pw)z, Py(I — Pw)z) = (P3(I — Py)z,(I — Pw)*z) =
={(I — Pw)P{(I — Pw)z, (I — Pw)z) <

-

< dgap(V, W) [Py (I — Pw)x| [(I — Pw)z ,

and therefore

-

| Py (I — Pw)z| < dgap(V, W) [(I — Pw)z| . (A.5.3.8)
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Inserting this estimate and ((A.5.3.7)) into the squared right side of ((A.5.3.4]) then gives

| Py (I = Pw)z|” + (I = Pv)Pwal® < dgyp(W, V) - | Pwal® + dgap(V, W) (T = Pw)a]* <

gap
< dg, (W, V) - ([Pwzl® + [(I — Pw)z|?) = dzap 2] -

Comparing with the left side of (A.5.3.4)) shows (|A.5.3.6)), and the equality of 6 and dg,p follows. By
(A:5.3.3) the latter also yields (i)} O

5.3.6 Remark We will use the symbols dgap, and § interchangeably to denote the gap metric on the
GraBmannian of a Banach space .

5.3.7 Theorem Egipped with the gap metric the GraBmann manifold of a Banach space is a complete
metric space.

Proof. We present the proof for the underlying Banach space being a Hilbert space . Then the claim
followsimmediately from the fact that B(%H) is complete and that the limit of a Cauchy sequence of
orthogonal projections (P,)nen < B(H) is again an orthogonal projection. The general case is more
tricky. O
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A.6.1. Symmetry groups of bilinear and sesquilinear forms

6.1.1 In this section K will always stand for the field of real or complex numbers. Before defining
their symmetry groups let us recall the notions of bilinear and sesquilinear forms. A bilinear form on
a K-vector space Visamap b: V x V — K having the following properties:

(BF1) The map b is linear in its first coordinate which means that
b(v1 + vo,w) = b(vy,w) + b(ve,w) and b(rv,w) = rb(v,w)

for all v, v1,v9,w e V and r € K.

(BF2), (SF2) The map b is linear in its second coordinate which means that
b(v, w1 + we) = b(v,w1) + b(v,we) and b(v,rw) = rb(v,w)

for all v, w, w1, we € V and r € K.

Bilinear forms with the property that commuting its variables leads to the same or to the negative of
the original bilinear form are given a particular name. More precisely, a bilinear map b: V x V - K
is said to be symmetric if

(BF3s) b(v,w) = b(w,v) for all v,w eV,

and antisymmetric or skew-symmetric if

(BF3a) b(v,w) = —b(w,v) for all v,we V.

A map b:V x V - K which satisfies and axiom below instead of [(BF1)] is called a

sesquilinear form.

(SF1) The map b is conjugate-linear in its first coordinate which means that
b(vi + v2,w) = b(v1,w) + b(va,w) and b(rv,w) = 7b(v,w)

for all v,v1,v2,w €V and r € K.
A sesquilinear form b is called a hermitian form if it has the following property:

(SF3c) The map b is conjugate-symmetric which means that

b(v,w) = b(w,v) forall v,weV.
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If the ground field of the underlying vector space of a bilinear or sesquilinear form b is C, one calls b a
complex bilinear form respectively a complex sesquilinear form. One uses analogous language when
the ground field is R. Note that a real sesquilinear form is the same as a real bilinear form.

A bilinear or sesquilinear form b is said to be weakly-nondegenerate if it satisfies axiom
(SF4w) The map®: V — V', v > v* = b(—,v) = (V 3w — b(w,v) € K) from V to its algebraic
dual V' is injective .

Note that [(SF4w)| is equivalent to the requirement that for every v € V the map b(v,—) : V — K,
w — b(v,w) is the zero map if and only if v = 0.

In case the underlying vector space V is normed, there is a stronger version of nondegeneracy for

bounded bilinear or sesquilinear forms b : V x V. — K. Namely, one calls such a form nondegenerate
if it fulfills

(SF4n) Themap’:V — V¥ v 1” = b(v,—) = (V2w — b(v,w) € K) from V to its topological
dual V* is a linear or conjugate-linear topological isomorphism.

Recall that b(v,v) € R for every hermitian form b on V and v € V. In case that such a b satisfies
(SF5s) b(v,v) =0 for all v eV,
then one calls the hermitian form b positive semidefinite.

Recall from Lemma that a positive semidefinite hermitian form b on a K-vector space V is
weakly-nondegenerate if and only if it is positive definite which means that

(SF5p) b(v,v) > 0 for all v e V\{0}.

6.1.2 Remark If b is a nondegenerate bilinear or sesquilinear form on a Banach space V, then one
sometimes calls the map * : V — V* from Axiom and its inverse  : V¥ — V the musical
isomorphisms associated to b.

6.1.3 Examples In addition to the hermitian forms introduced in Examples let us give a few
more examples of bilinear forms which are particularly relevant for mathematics or mathematical
physics.

(a) Let p,q be positive integers, n = p + ¢, and {:, ‘>p’q : R™ x R® — R the pseudo-euclidean form
given by

p n
<x7y>p7q = leyl— Z 2yl forz= (2. 2", y= (..., y") eR".
i=1 j=p+1

The map (, ->p7q is a nondegenerate bilinear form, but it is not positive semidefinite by definition.
The space R™ together with the pseudo-euclidean form (-, ‘>pq is sometimes denoted R4, For

the particular case (p,q) = (1,d) = (1,n — 1) one calls R4 Minkowski space of space-time
dimension d + 1, and (-, )\, := {:, )1 4 the corresponding Minkowski metric. The components

of elements ., y € R14 of Minkowski space are often indexed in the form z = (20, 2!, ... 2%) =
($“)ﬁ:o and y = (v%, 9, ..., y%) = (y*)?_,. In this notation, the Minkowski metric is given by
d . .
w,ym ="y =) 2y
i=1
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Moreover, one associates to x and y the space-vectors
ZF=(a'. 2 = @)y and g=(' 0D = (W)

When labels run through all space-time indices they are usually denoted in the mathematical
physics literature by lower-case Greek letters, when they run only through space indices, they are
denoted by lower-case Roman letters. We will follow these conventions.

(b) Next consider K2 with n € N> and define
w: K™ xK* - K, (v,w)— Z(Ui Wngi — Wi VUpgi) -
i=1

Then w is a nondegenerate antisymmetric bilinear form. We call it the standard symplectic form
on K?". More generally, a nondegenerate antisymmetric bilinear form w : ExE — K on a Banach
space E over K is called a symplectic form. If w : E x E — K is only weakly-nondegenerate (but
still antisymmetric), then one says that w is a weakly-symplectic form.

If V is a Banach space and E = V@ V*, then
w:ExE->K, ((v,0),(w,8)) — Bv) — a(w)

is a weakly-symplectic form on E which is symplectic if and only if V is reflexive that is if and
only if the canonical embedding V < V** is an isomorphism.

Proof. Antisymmetry is clear by definition. O

6.1.4 Next consider a Banach space E over K with norm ||-|| and the space B(E) of bounded K-linear
operators on E. Recall that ®B(E) carries the following natural topologies:

(i) the norm topology or uniform operator topology T, defined by the operator norm

| =1 B(E) - Roo, A [A] = sup {|Av] € Rz [ve E& o] <1},

(i) the compact-open topology T, defined by the seminorms
pi : B(E) > Roo, A pg(A) :=sup {HAUH eERsg|vE K} ,

where K runs through the nonempty compact subsets of E,

(iii) the strong operator topology Ts defined by the seminorms
po: B(E) > Rz, A py(A) := [Av] ,

where v runs through the nonzero elements of E,

(iv) the weak operator topology T, defined by the seminorms
Paw i B(E) > Rxo, A pru(A) == A(Av) ,

where A runs through the nonzero bounded linear functionals E — K and v through the nonzero
elements of E.
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These four operator topologies are comparable. More precisely one has

TwCTsCTeo < Th .
In case E is finite dimensional, the topologies coincide, if E is infinite dimensional, then the inclusions
are proper.

To denote which topology B(E) is endowed with we write B(E),, B(E)w, B(E)s and B(E).,
respectively.

6.1.5 Proposition and Definition Let E be a Banach space over K, and GL(E) < B(E), the space
of bounded invertible K-linear operators on E endowed with the norm topology. Then the following
holds true.

(a) The space GL(E) is open in B(E),.
(b) GL(E) together with the operator product and the identity map idg is a group.

(c) The group G := GL(E) endowed with the norm topology is a topological group which means
that it has the following properties:

(TopGrl) The multiplication map - : G x G — G is continuous.

(TopGr2) The inversion map i : G — G is continuous.

Proof. ad (b). By the open mapping theorem the inverse of a bounded invertible operator is bounded
as well, hence g=! € GL(E) for all g € GL(E). Obviously idg € GL(E), so GL(E) is a group indeed.

ad (a). Let g € GL(E). Then |lg7!| > 0, since 1 = |jv| < |g7!||lgv| for every unit vector v € E.
Let 0 <7 < ﬁ. For A € B(E) with |A| < r the series ZkeN(—l)k(g_lA)k then is dominated

by the converging geometric series >, 7® hence converges too. Compute

(idg + g A) (i(—l)k(glA)k> = i(—n g At i (97" 4)" = idg
k=0

k=1

and analogously

(i (g7"A) > (idg + g 'A4) = idg .

Therefore idg + g~ A is invertible with bounded inverse Zfzo(—l)k(g_lA)k. Hence the operator
g+ A= g(idE + gflA) is invertible as well and the open ball of radius r around g is contained in
GL(E). Thus GL(E) is open in B(E).

ad (c). To verify continuity of multiplication recall that |AB| < ||A]| | B] for all A, B € B(E). Then
|AB — A'B| = [(AB — A'B) + (A'B - A'B')| < |A— A| |B| + | 4| |B - B| .

Hence multiplication is locally Lipschitz continuous, therefore continuous.
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To prove continuity of inversion let g € GL(E) and choose 0 < r < ﬁ. Then g + A € GL(E) for
all A e B(E) with |A| < r by the preceding considerations. Moreover,

g+ A" =g =|((de + g7 A) " —idg)g | <

S k k L1 N gk H9_1H2
<lg~' | LD <[g7 X lo7" A" < TS Al
= k=1
Hence inversion is locally Lipschitz continuous, so in particular continuous. O

Unless mentioned differently, we assume from now on that GL(E) carries the norm topology. Some-
times we will write GL(E), to emphasize this.

6.1.6 Assume that b : E x E — K is a bounded bilinear or sesquilinear form on a Banach space E
over K. Consider the group GL(E) and define G(E, b) as the set of all g € GL(E) such that

b(gv, gw) = b(v,w) forall v,weE .

6.1.7 Proposition Under the assumptions stated G(E, b) is a closed subgroup of GL(E),.
Proof. If g,h € G(E,b), then their operator product gh lies in G(E, b) as well since
b(ghv, ghw) = b(hv, hw) = b(v,w) for all v,weE .
Moreover, idg leaves b invariant, so is in G(E,b), too. Hence G(E, b) is a subgroup of GL(E)j.
Now assume that g € GL(E),\G(E, b). Then there are v, w € E such that
b(gv, gw) # b(v,w) and o] = |w]| =1

Put § = [b(gv, gw) — b(v,w)| and let C = sup {|b(z,y)| | z,y € E& |z| = |ly| = 1}. Then one has
for all h € B(E)

|b(hv, hw) — b(v, w)

| (b(hv, hw) — b(gv, gw)) — (b(v, w) — b(gv, gw))| =
’ — [b(hv, hw) — b(gv, gw)|| =

|b(h1}7 hw) - b(gU, hw)| - ‘b(gvv hw) - b(gv,gw)] =
6= Clh—gl(In]+1gl) -

\% \\/ \%

Hence, if | — g| < € with ¢ = min {1 then h € GL(E) and

1 0
27 2(C+D)(2]g[+1) }

|b(hv, hw) — b(v,w)| =0 —C (2|g| +1)e = =0 .

N | =

So GL(E)n\G(E, d) is open and the claim is proved. O

6.1.8 Examples (a) For a Hilbert space H, the group G(H,<:,-)) is called the unitary group of H
and denoted U(J). If the underlying ground field is R, one often writes O(H) for G(I, (-, -))
and calls it the orthogonal group of the real Hilbert space H. In the finite dimensional case,
U(n) stands for U(C™) and O(n) for O(R™).
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(b) Given two positive integers p, q consider the pseudo-euclidean metric (-,-), , on RP? =~ RPH4,

()

see Example F The invariant group G(]R L > ) then is called a pseudo-orthogonal
group and is denote O (p,q

Let E be a Banach space over K with a symplectic form w. The group Sp(E,w) := G(E,w)
then is the symplectic group associated to (E,w). If E is K?” and w its canonical symplectic
form, then one writes Sp(2n, K) for the associated symplectic group.

6.1.9 It has been claimed wrongly at several places in the mathematical literature, notably in |Simms
(1968)[Proof of Thm. 1] and |Atiyah & Segal (2004)[p. 321] that the unitary group with the strong
operator topology respectively with the compact-open topology is not a topological group. The
correct(ed) statement appeared in [Schottenloher| (1995)[111.3.2 Satz], |Neeb| (1997)[Prop. II.1], and
Schottenloher| (2008))[Prop.3.11], whose presentation we will essentially follow here.

6.1.10 Proposition /f H is a Hilbert space, then U(H)s, the unitary group U(H) endowed with the
strong operator topology, is a complete topological group. Moreover, the compact-open topology, the
strong operator topology, and weak operator topology all coincide on U(H). Finally, if H is separable,
then U(H)s is completely metrizable.

Proof. For v e H and V € U(HK) let p, v : U(H) — Rx( be defined by

U~ poyvU) =[U—=V)v|.

A subbasis of the strong operator topology on U(XH) then is given by the sets

{UeUH) |pov(U) <e}, whereved, VeU(H), ande >0 . O

A.6.2. The Lie group SO(3) and its universal cover SU(2)

6.2.1 Recall that the orthogonal group in real dimension 3 is given by

3) = {ge GL(3,R) | VZ,§e R*: (g7, gi) = (&, )} -

The special orthogonal group in dimension 3 is the subgroup

SO {geO |detg—1}.

Let us show that both are Lie groups. Consider the map

f:GL(3,R) - &ym(3,R), ¢g+— q'q ,

where ¢' is the transpose of g and Sym(n,R) denotes the space of real symmetric n x n matrices.

Note that dim &Gym(n,R) =

n(n;l) and that f is well-defined since (g'g)* = g'g. We show that f

is a submersion. To this end check first that for every g € GL(3,R) the tangent map of f at g is

T,f : gl(3,R) > Gym(3,R), A A'g+g'A.
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For given S € Gym(3,R) put A = 1 (gt)f1 S and compute

Tyf(A) = % (S*+9)=5.
Hence f is a submersion, and O(3) = f~!(I3) is a submanifold of GL(3, R) of dimension dimg GL(3,R)—
dimg Gym(3,R) = 9—6 = 3. Because the group multiplication and inverse on GL(3,R) are smooth,
their restriction to O(3) is so, too, and O(3) is a Lie group. Since (det g)? = det g det g* = 1 for all
g € O(3), the subgroup SO(3) = O(3) N det™*(R~() is open in O(3), and O(3) is the disjoint union
of SO(3) and —SO(3). Moreover, SO(3) becomes a Lie group.

The Lie algebra 0(3) of O(3) coincides with the Lie algebra s0(3) of SO(3) and can be determined
via the submersion f, too. More precisely

0(3) =s50(3) =ker Ty f = {Aegl(3,R) | A"+ A =0},

and s0(3) is the space of all skew-symmetric real 3 x 3 matrices. Note that tr A = 0 for every element
A€ so(3).

6.2.2 Theorem The Lie algebras (R?, x) and so(3) are isomorphic. An isomorphism is given by the
map

xt 0 —z3 x?
M:R® —>s0(3), &= |2?|—->Mz=| 22 0 —a!
x3 —z2 gzl 0

Denoting by €, &>, &3 the standard basis of R3, the elements

00 0
Je=Ji=Mz =[0 0 —1],
01 0

01
Jy=Jy=Mz =0 0 0],
10 0

10

J.o=Js=Mz =1 0 0
0 0 0

form a basis of the Lie algebra so(3). These elements are sometimes called the (standard) infinitesimal
generators of rotations.

Proof. By definition M is linear. Moreover, the images Mg, , k = 1,2,3, are linearly independent, so
by dimension reasons the map M is a linear isomorphism. It remains to show that M preserves the
Lie brackets. To this end compute for Z, 7 € R3

2l yl 72 yS 3 y2
fxgj: 2 | % y2 — m3y1—x1y3 ,
3 y3 2l y2 — 2 yl

141



A.6. Lie groups A.6.2. The Lie group SO(3) and its universal cover SU(2)

and then
0 _1,3 33'2 0 _y3 y2
Mz Mg = |2 0 —a! y o 0 —yl|=
—z2 ! 0 —y? oyl 0
BB — a2y 22yl 23yl
_ 2l g2 38— glyl 23 42
2l y? 22 43 2y~ ply!
Forming the commutator gives
0 22yl —aly? 23yl — xlyB
[Mf, Mg] = |zt y2 —z? yl 0 z3 y2 —z? y3 = Mzyg -
2l —adyl 22y — 23y 0
Hence M preserves Lie brackets and the claim is proved. O

6.2.3 Now let us consider the special unitary group
SU(2) = {g e GL(2,C) | Vo, we C?: {gv, gw) = {v,w) & det g = 1} .
To verify that SU(2) is a Lie group let f be the map
f:6L2,C) = Hem(2), g—g7yg,
where $ierm(n) denotes the space of hermitian n x n matrices. The tangent map of f at g € GL(2,C)

is given by
Tyf - gl(2,C) — Herm(2), A A*g+g*A.

For given H € $erm(2) let A = (g*)"1H. Then
1
Tyf(A) = §(H* +H)=H,

which entails that f is a submersion. Hence U(2) = f~!(I3) is a real Lie group of dimension
dimg GL(2,C) — dimp $erm(2) = 8 — 4 = 4. Recall that U(2) is the unitary group in dimension 2.
The Lie algebra of U(2) is given by u(2) = ker Ty f, the space of all skew-hermitian 2 x 2 matrices.
The determinant function det : U(2) — S is a smooth group homomorphism and a submersion. The
latter is true because for all A € u(2)

Ty det(A) = 7 det(exp(tA)) = | A trA,
ot ol
and because the matrix A = i1 € gl(2,C) is skew-hermitian and its trace tr A = 2i spans fie(S!) =
Ri. Therefore, SU(2) is a real Lie group of dimension dimg U(2) —dimg Ri = 3 and with Lie algebra
su(2) given by the skew-hermitian matrices of trace 0.

6.2.4 Proposition The Lie group SU(2) is homeomorphic to S?, so in particular compact and simply
connected. A homeomorphism is given by

—22 4+ 23 20— b

04 1: .2, .3
TS SU(2), (mo,xl,xQ,x?’)H(x Fal o I)
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Proof. One has for (20, 2!, 22, 23) € S?

20+ ati 22+ 28 2V — b —x? — 23 1
—z2 4+ 23 20— gl 22— 23 20+ 2l ’

hence the matrix (20, 2!, 22, 23) is unitary. So ¥ is well-defined. The map W is obviously continuous

and injective. It remains to show that W is surjective, because then, by compactness of the 3-sphere,
the map ¥ is a homeomorphism and SU(2) has to be compact. Let

[z wu
I=\v w
be a unitary matrix with determinant being 1 that is zw — uv = 1. By unitarity and the formula for
the inverse of a 2 x 2 matrix one obtains the equality

(5 7)-Ga)

hence w = Z and v = —7. Inserting this in the equation for the determinant entails that |z|?+|u|? = 1.
Now write z = 20 + z'i and u = 2% + 23i with real 2% 2!, 22, 23. Then (20,2, 22, 23) € S? and
g=W(z0 2!, 22 23), so W is surjective and the proposition is proved. O

6.2.5 Proposition Consider the space
Herm™(2) = isu(2) = {X € gl(2,C) | X* = X & tr X =0}

of all traceless hermitian 2 x 2 matrices. Then $iexm'™(2) is a real vector space of dimension 3 with
a basis given by the Pauli matrices

(O () (10
10 i 0 0 -1
and with inner product
(yppeo - Herm™(2) x Herm™(2) > R, (X,Y) — —% (det(X +Y) — det X — detY)
and corresponding norm
|+ Jgeo = Herm™0(2) > Rsg, X > /—det(X) .

An isometric isomorphism between (R3,{:,-)) and ($exm™(2), (-, yuo) is given by
3
G:R® > Hem™(2), TG F=) oy
k=1

Its inverse maps X € $erm"(2) to the vector & with components 2 = 1 tr(Xoy,), where k = 1,2, 3.
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Proof. Let X = ( ZL) 2 € Herm'(2). Then a,d € R and w = %, since X is hermitian. The
assumption tr X = 0 implies d = —a. Hence X is of the form
( a b+ci )
) = ao3 + coq + boo
b—ci —a

with a,c,d € R, and any such matrix is an element of $jerm®™(2). Since the Pauli matrices are
obviously linearly independent, they therefore form a basis of $etm™(2).

Next compute for & = (2!, 22, 23) € R3

3 2, 1
det(&'-f)zdet( 23; 1 o —i—:g I>

¢ —x i —

= —(@*)? - (@) - (@¥)?=—|Z)*. (A6.2.1)

Hence the map $Herm™(2) — Rsg, X ~— 4/—det(X) is a norm on $Herm'™(2) which has to fullfill
the parallelogram identity since the euclidean norm | - || does.

The norm on $ierm™™(2) is therefore induced by an inner product which can be recovered by the
polarization identity (A.3.1.9)) that is by
1
XY g0 = =5 (det(X +Y) —det X —detY) forall XY e Heem™0(2) .

Moreover, & preserves norms by ((A.6.2.1)), hence is an isometry.

For the remaining part of the claim check first that (04)? = 1 for k = 1,2,3 and that

i 0 . 0 i . 0 1 .
0102=<(|) _i>=|03,0203=(i (I)>=|01,0301=<_1 0)=|02. (A.6.2.2)

Since the Pauli matrices are hermitian, forming the hermitian conjugate on both sides of these equa-
tions entails
0'20'1=—i0'3, O'30'2=—i0'1, 0'10'3=—i0'2 . (A623)

Now compute for Ze R3 and k = 1,2,3

%tf((f' G)ok) = %tr 2k (0)%) = -

The proposition is proved. O

6.2.6 Lemma For i, j € {1,2,3} the Pauli matrices satisfy the following commutation relations:

3
[O‘i,O'j] = 2j Z €ijk Ok »
k=1

where for i, j, k € {1, 2,3} the Levi-Civita symbol €;j;, is defined by

1 if(i,4,k) is an even permutation of (1,2,3),
gijk = \ —1 if (4,4,k) is an odd permutation of (1,2,3), and

0 else.
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6.2.7 Remark Recall that a permutation of (1,2, 3) is even if and only if it is cyclic.

Proof. The commutation relations follow immediately from equations ((A.6.2.2) and (|A.6.2.3) in the

proof of the preceding proposition. O

6.2.8 Theorem The matrices

1 (0 —i 1 (0 -1 1 (-0
T -0 )0 P77 1 0 )0 BT T L0 i

form a basis of the Lie algebra su(2) and obey the commutation relations
[75,7j] = 21, for every cyclic permutation (i, j, k) of (1,2,3) . (A.6.2.4)

Moreover, the linear map ® : su(2) — R> uniquely defined by 7, — 2e;, for k = 1,2,3 is an
isomorphism of Lie algebras, where R? carries the Lie algebra structure given by the cross product
x. In particular, the Lie algebras su(2) and so(3) are isomorphic with an isomorphism given by the
composition

0 -3 2
—z3i —2? -l : 1
Mo ® :su(2) — so(3), Zka = 57 ;. 3. -2 23 0o -z,
r?—x'i x°i 9 1
k=1 —x° 0
where M : R® — s0(3) is the isomorphism from Theorem[6.2.3
Proof. Since multiplication by —i is a real linear isomorphism from $jerm'™(2) to su(2) and since

the Pauli matrices form a basis of Hetm™(2), the matrices 73, k& = 1,2, 3, form a basis of su(2).
The commutation relations ((A.6.2.4]) are an immediate consequence of the preceding lemma. The
Lie bracket is preserved by ® since

(2e;) x (2e;) = 2(2ey) for every cyclic permutation (3, j, k) of (1,2,3) .
The rest of the claim now follows by definition of ® and Theorem O

6.2.9 Theorem For every g € SU(2) the linear map

H
—
o
—~
Qi
8
N—
S
*
SN—

W92R3—>R3, X— a0
is an orthogonal transformation. Moreover, the map
m:SU(2) - SO(3), g—my

is a differentiable surjective group homomorphism with kernel {+1I,} ~ 7Z,/2. In particular, = is the
universal covering map of SO(3). Finally, the tangent map Ty7 : su(2) — s0(3) coincides with the
isomorphism M o ® from Theorem[6.2.8

Proof. Observe that det(gAg*) = det A and tr(gAg*) = tr(A) for all ¢ € SU(2) and A €

Herm™(2).  This together with the fact that & is an isometric isomorphism from (R3] - ||) to
($erm™(2), 1/~ det(-)) entails that the transformations 7, are orthogonal. O

145



A.6. Lie groups A.6.3. The Lorentz group SO(1,3) and its universal cover SL(2,C)

A.6.3. The Lorentz group SO(1,3) and its universal cover SL(2,C)

to do: change signature from (—, +,+, +) back to (+,—, —, —).

6.3.1 Recall from Examples 6.1.3:'@]that the Minowski inner product of two elements z = (2%, 2!, 22, 2
R* and y = (4°,9",9%, %) € R* is defined by (x,ydm = 2%y° — 333 _, 2*y*, and that R* endowed
with the Minkowski inner product is denoted R13. The signature of the Minowski inner product there-
fore is (4, —, —, —) or in other terms (1,3). As usual we call R Minkowski space of (space-time)
dimension 4.

Recall from Examples[6.1.8|[(b)| that the pseudo-orthogonal group O(1,3) consists of all g € GL(4,R)
such that

{gz, gydm = {x,ydm for all z,y e R* .

Following common language in mathematical physics we call O(1, 3) the Lorentz group in space-time
dimension 4. The subgroup

SO(1,3) = {g€0O(1,3) |detg = 1} < O(1,3)

is called the proper Lorentz group. Let us show that the Lorentz groups O(1,3) and SO(1, 3) are Lie
groups. To this end put

3
I
S O O
(es)
|
—

and observe that (z,yd)m = {(x,ny) for all z,y € R*, where (—, —) denotes the euclidean inner
product. Hence a matrix A € GL(4,R) lies in O(1,3) if and only if

A'pA —n=0. (A.6.3.1)

Following standard language in mathematical physics we call every such A a Lorentz transformation.
The map f: GL(4,R) — Gym(4,R), A — A*nA — 1 is smooth and has derivative

Taf : Mat(4,R) — Sym(4,R), A — A'nA + A'nA

at A € GL(4,R). The derivative at A is surjective since T) f (3n(AY)"!B) = B for all B € Gym(4, R).
Hence f is a submersion and the preimage O(1,3) = f~%(0) a Lie subgroup of GL(4,R). The Lie
algebra 0(1,3) of the Lorentz group then consists of the kernel of Ty f that is of a all matrices
A € Mat(4,R) such that

A'n+nA=0. (A.6.3.2)

Since dimo(1,3) = dim Mat(4,R) — dim Sym(4,R) = 16 — 10 = 6, one concludes that the Lorentz
group O(1,3) is a Lie group of (real) dimension 6. By (|A.6.3.1), the determinant of a Lorentz
transformation A € O(1, 3) fulfills | det(A)| = 1. Moreover, time reversal

-1 0 0 0
0 1 0O
T= 0 010
0 0 01

146



A.6. Lie groups A.6.3. The Lorentz group SO(1,3) and its universal cover SL(2,C)

and parity inversion

1 0 0 O
0 -1 0 0
P= 0 0 -1 0
0 0 0 -1

are both Lorentz transformations with determinant —1. One concludes that SO(1, 3) is a Lie subgroup
of the Lorentz group O(1, 3) and that the latter is the disjoint union of SO(1,3) and SO(1,3) - T =
SO(1,3) - P.

6.3.2 The special linear group SL(2,C) consists of all g € GL(2,C) such that detg = 1. It is a
complex Lie group by the following argument. Observe that the determinant det : GL(2,C) — C is
a complex differentiable group homomorphism. Its (complex) tangent map at the identity 1 is given

by
0 0
Tydet:gl(2,C) - C, A~ — detexp(zA) = — A —gr 4.
0z z=0 0z z=0

This entails that Ty det (21) = 2z for each z € C hence det is a holomorphic submersion and
SL(2,C) = det™!(1) a complex Lie group.

6.3.3 Proposition The Lie group SL(2,C) is simply-connected.

Proof. We first show that SL(2) is path-connected. So let g € SL(2C). Then transform g into Jordan
normal form that is choose S € GL(2, C) such that

-1 _ (@ e
S¢S~ = (O a2> ,
where a1, a2 € C with ajas = 1 and e € {0,1}. Then choose a path ~; : [0,1] — C* = C\{0} such
that 41(0) = 1 and 1 (1) = a;. Let 2 : [0,1] — C* be the path which maps ¢ to y2(t) = (’yl(t))_l.

Now put
_ o1 (m(@)  te
v =57 (750 )

Then h: [0,1] — SL(2,C) is a continuous path connecting h(0) = I» with h(1) = ¢g. So SL(2,C) is
path-connected.

Next we prove that SL(2,C) is simply-connected. To this end recall that the subgroup SU(2)
SL(2,C) is simply-connected. So to verify that m(SL(2,C)) is trivial it suffices to construct a
(strong) deformation retraction from SL(2, C) onto SU(2) which means that we have to construct a
continuous map r : SL(2,C) x [0,1] — SL(2,C) such that

ro = ld, ™ (SL(2,C)) e SU(Q), and rt|5U(2) = idSU(2) for all t € [O, 1] .
Here, as usual, r; stands for the map SL(2,C) — SL(2,C), g — r(g,1).

. : . ail a
Let us agree on the following notation. For every matrix a = (au a12> € Mat(2 x 2,C) we denote
21 a2

ai;

by a; with 7 = 1,2 the column vector <a
2

, _ _ s
) and write a = (a1, az). Vice versa, if a; = (ah> e 2
2i
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. . . a a
with ¢ = 1,2 are two (column) vectors then we denote by (ai,as) the matrix a = <a11 a12>'
21 Q22

If now g € SL(2,C) with column vectors gi, g2, then we know that g; and go form a basis of C2.
Gram-Schmidt orthonormalization will transform the basis (g1, g2) into an orthonormal basis (u1, u2):

g1 g2 —{g2,ur)ux
(91,92) — (U1,U2) = ( ) ) .
lg1ll” lgz — <g2, v yua|

Therefore, Gram—Schmidt orthonormalization can be understood as a retraction from SL(2,C) to
SU(2) leaving SU(2) invariant. So we are almost done, we just need to make the Gram—-Schmidt
process ‘continuous” in the sense that it can be deformed to the identity.

To achieve this define the following matrices depending on the parameter ¢ € [0, 1]:

0 1 —t{g2,u1) - I 0
t = g ) t = ) t = )
pi(9) ( “ 1) a(9) <0 1 ) pi(9) (0 |g§|t>

where u; = ﬁ and g3 = g2 — {g2,u1)u;. Each of these matrices lies in GL(2,C) since their
determinant is non-zero. Now we define r : SL(2,C) x [0,1] — SL(2,C) by

r(g,t) = g-p(9) - a(g) -De(g) , where g€ SL(2,C), te[0,1] .

Then r9(g9) = g, r1(g) = (u1,u2) € SU(2) (since (u1,us2) is an orthonormal basis of C?), r(g,t) = ¢
if g € SU(2), and r(g,t) € SL(2,C) for all g € SL(2,C), t € [0,1]. The last property is the only not
obvious one and needs to be verified because it guarantees that r is well-defined. The other properties
are immediate and just tell that r is a strong deformation retraction of the kind we have been looking
for.

We check two identies from which the remaining claim will follow immediately. For every g =

<g11 gw) € SL(2,C) compute
921 922

1 = detg-detg = (g11922 — 921 912) - (911 922 — 921 912 ) =
= (lg11]? [g22]® + |g21]? l912]*) — 2%Re(g11 922 921 912) =
= (lgu1l? lg12* + lg11]* [g22]* + g211? |gr2|* + |g21* |g22|?) —
- (|911|2 |912|2 + |921|2 |922|2 + 20Re(g11 922 921 912)) = H91H2 H92H2 - |<91,92>|2 .

Then
1 t
detr(g,t) = det g det p¢(g) det q:(g) det pi(g) = () =
g1l llgs]
t ¢
(L lga _ 1 _1
ol Jlgu1? 1gal? = Ko, g2P V0aul? 19l = Kor, )12

which means that r(g,t) is in fact an element of SL(2,C) for all g € SL(2,C) and ¢ € [0,1]. This
finishes the proof. O
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6.3.4 Proposition Consider the space
Herm(2) = {X € gl(2,C) | X* = X}

of all hermitian 2 x 2 matrices. Then $etm(2) is a real vector space of dimension 4 with a basis given
by the identity matrix plus the Pauli matrices that is by

(10 (01 [0 —i (1 0
0=V 1 /)T 10270 0 )0 Lo 41

The bilinear form
1
(o Herm(2) x Herm(2) - R, (X, Y) — B (det(X +Y) —det X —detY)

is symmetric, non-degenerate, and has signature (1,3). An isometric isomorphism between (R1’37 (o >|v|)
and ($etm(2), (-, -)y) is given by
3
o :RY¥ 5 Hem(2), z—o0-z= Z oy
k=0

Its inverse maps X € $jerm(2) to the vector x with components ¥ = L tr(Xoy), wherek = 0,1,2, 3.
6.3.5 Theorem For every g € SL(2,C) the linear map
g RY > RY 207 (g(o - 2)g")
is a proper orthochronous Lorentz transformation. Moreover, the map
m:SL(2,C) - SO(1,3), g~ 7,

is a differentiable surjective group homomorphism with kernel {15} ~ 7,/2. In particular, the tangent
map Ty : s1(2,C) — s0(1,3) is an isomorphism and  is the universal covering map of SO'(1,3).

Proof. Every element g € SL(2,C) induces a linear isomorphism
ag : Hem(2) — Herm(2), X — gXg*

which is isometric since det(a,X) = det X for all X € Herm(2). By Proposition [6.3.4] o : RT3 —
$Herm(2) is an isometric isomorphism, hence ; = o0 oy o 0! leaves the Minkowski metric invariant
and therefore is a Lorentz transformation. O
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Fibered manifolds and fibered charts

7.1.1 Definition By a locpro-fibered manifold we understand a smooth surjective submersion 7 :
E — M from a locpro-manifold E onto a manifold M. If E is a finite dimensional manifold, one
calls a surjective submersion 7 : E — M just a fibered manifold. One usually calls 7 the projection,
E the total space and M the base of the (pro-)fibered manifold. A (locpro-) fibered manifold is often
denoted as a triple (E,m, M).

A morphism of (locpro-) fibered manifolds 71 : Ey — M, and 79 : E5 — M, consists of a pair
(¢, f) of smooth maps ¢ : F1 — Fy and f : My — M such that the diagram

E1L>M1

o| It

EQ?MQ

commutes. One sometimes also says in this situation that ¢ is a morphism of (locpro-) fibered
manifolds over the map f : My — Ms. We in particular make use of this language when the base
manifolds M; and M coincide and f is the identity map. We then just say that ¢ is a morphism of
(locpro-) fibered manifolds.

7.1.2 Obviously, the identity map idz on the total space of a (locpro-) fibered manifold (E, 7, M) is
a morphism. Moreover, the composition

(p2, f2) o (1, f1) := (w2001, fa 0 f1)
of morphisms
(p1, f1) « (B1,m, M) — (Eo,me, Ma) and (g2, f2) : (E2, w2, M) — (E3, w3, M3)

is a morphism of (pro-)fibered manifolds from (Ey, 71, M) to (Eq,ma, Ms), and idg acts as identity
morphism. One concludes that (locpro-)fibered manifolds and their morphisms form a category.

7.1.3 Definition Let (E, 7, M) be a fibered manifold. By a fibered chart of (E,m, M) or a chart
adapted to m : E — M one understands a chart (U, ) :.

7.1.4 Proposition Given a locpro-fibered manifold (E, 7, M), the fiber F,, := n~*(p) over an ele-
ment p € M is a locpro-manifold.

150



A.7. Fiber bundles A.7.1. Fiber bundles

Proof. In the case where E is finite dimensional the claim is an immediate consequence of the
submersion theorem So assume that E is infinite dimensional. Since the claim is local, we can
assume that there exists a smooth projective representation (E;, 1;;, ;)i jeN,i<; of E. Since M is
finite dimensional and using again that the claim is local we can assume that the the smooth map
7 : ' — M factors in a neighborhood of F}, through some smooth map 7; : E; — M that means that
7 = m; on;. Since 7 is a smooth surjective submersion, 7; is so, too. Therefore, F; := 7, !(p) is a
submanifold of E; by the submersion theorem. Now put 7; := m; on;; for all j > i. As a composition
of surjective submersions each such 7; is a surjective submersion as well. Hence for every j > i the
preimage F} := ﬂ;l(p) = 771;1(}71) is a submanifold of E;. Since m = m;on; = mon;jon; = mjon;, the
fiber F}, coincides with nj_l(Fj) for each j > i. Hence we obtain a smooth projective representation
(Fj, @ik, ¢j)jken j<k of Fp, when defining ;) as the restriction 7;;|r, and ¢; as the restriction
nj|F,. So Fy is a pro-manifold and the claim is proved. O

7.1.5 Proposition A locpro-fibered manifold has local smooth sections that is for every locpro-fibered
manifold (E, 7, M) and every point p € M there exists as smooth map s : U — E defined on an
open neighborhood U of p in M such that w o s = idy.
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Multi-Indices

8.1.1 Assume that J is a non-empty set which we call index set. By a multi-index over J we then
understand an element a € NO) that is a family a = (ay)ieg of natural numbers such that only finitely
many «; are non-zero. The order of such a multi-index is defined by || := >, ;. For K € N and

k1 € N and ko € N U {00} with k1 < ko we denote by N(j) the set of all multi-indices over J of order

k and by NV )k the set of all multi-indices of order less or equal ko which have order greater or equal
k1. For reasons of clarity, which will be become obvious below, we sometimes also refer to an element
of NU) as a Greek multi-index.

8.1.2 Example In most cases the index set J will be of the form J = {1,...,d} or of the form
J={0,...,d— 1} for some positive integer d. One then has N’) = N = N“ and multi-indices are
given by d-tuples of the form o = (aq,...,aq) or B = (Bo,-..,La—1), respectively.

8.1.3 The space of multi-indices N) carries the structure of a module over the semiring N in the sense
of Johnson & Manes| (1970) that is N) together with componentwise addition is an abelian monoid,
componentwise multiplication with scalars is associative, 0 acts as zero map, 1 acts as identity, and
the distributivity laws hold true. Moreover, N is free over the family of multi-indices (1;)ieg defined

by
) 1 forj =1,
Li(j) = { ’

0 else.

8.1.4 By a Roman multi-index of a given order k € N over some index set J we understand an
element I of the cartesian product J*. For k = 0 we define J° as the set {O}, where O is a fixed set
not appearing as an element of J. We call O the Roman multi-index of order 0 over J. \We sometimes
write |I| for the order of a Roman multi-index. Note that we denote elements of J* by capital Roman
letters I, J, ... and their components by their respective small Roman letters 4;, j;, and so on.

For £ > 1 the symmetric group S}, acts in a canoncial way on J*k. We denote the orbit space of
this action by J* and the orbit through a Roman multi-index I € 3% by I. In other words I is the
equivalence class of all Roman multi-indices obtained from I by permutation of its components. For
k = 0 we identify 79 with 3 and O with O.
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For Roman multi-indices I = (iy,...,4x) € ¥ and J = (j1,...,5;) € I* of positive order we denote
by I+ J the multi-index (iy, ..., ik, j1,. .., 1) € J¥*L. Obviously, the equivalence class T + J depends
only on the equivalence classes I and J, hence the operation + descends to a map

+ jk/Sk X jl/Sl — f]kJrl/SkJrl .
It is straightforward to see that this operation is associative and commutative. Next define
[+0=0+I=1 and T+0=0+1=1

for all Roman multi-indices I and put J* := J*/~, where J°* := | |,y J* and ~ is orbit equivalence
which defines two Roman multi-indices I € J¥ and J € 7' as equivalent if K = [ and I = J. Then
Je = | lken J%. Moreover, J* together with + as binary operation and O as zero element becomes an
abelian monoid.

Note that every i € J can be regarded as a Roman multi-index of order 1 and that i = i, so we have
the sums I+ = (i1,...,4, %) and I + ¢ = (i1,...,0k, 7). Sometimes we also write 17 respectively Ii
for these sums.

8.1.5 Lemma Assume that J is totally ordered by some order relation <. Then every element of J¢
of order k € N~ has a unique representative I = (iy, ... i) € I* such that iy <iy < ... <iy. We
call such a representative an ordered Roman multi-index or an increasing representative.

Proof. One proves the claim by induction on the order k. For k = 1 the claim is obvious. Assume that
it holds for some k and let J be a Roman multi-index of order k + 1. Let j,, be the maximum of the
components ji,...,jk+1, and let ¢ € Sk1 be the permutation switching m and k + 1 and acting by
identity on the rest. By hypothesis there exists a permutation 7 € Sy such that j,-(1) < ... < jorx)-
Put 7(k+1) = k+1. Then 7 € Sp1 and I = (jor(1), - -, Jor(k+1)) is a representative of J with the
desired properties. This finishes the inductive step and the claim is proved. O

8.1.6 Proposition Let J be an index set with a total order < on it and k : NU) — J° the map
which maps the zero map 05 : I — N to O and a Greek multi-index « of positive order to the Roman
multi-index

(i1, 082,y lay ey iy ey i)
N Y S~ 7
aj, times oy, times ailtimes
where iy < ... < i, are the (pairwise distinct and ordered) elements i € J with non-vanishing

component «;. Then the induced map % : NU) — 7% — k(a) is an isomorphism of monoids and
maps the space N,(f) of Greek multi-indices of order k onto J%. Moreover, if J is finite, then N,(Cj) and

Ik are finite as well and both have cardinality given by

— 1
IN| = [7F| = fH (17 +1)

ks
Proof. First we need to show that % is a bijection. To this end let us make our notation somewhat
more precise and choose for each a € NU\ {04} the elements 3¢, ... ;i € Jso that if < ... <if,
aje >0forj=1,....lo and a; = 0 for all i € I\{f,..., " }. Then
k(o) = (11,...,21,12,...,22,...,zla,...,zla) )
YN S~~~
ai?times aigtimes O‘if‘a times
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By construction, r(a) is of increasing form. For each element ITeJe letIbe the representative of
increasing form. Define A(T) € NU) as follows. If T =0, put A(I) = 05. IfT# 0, let i} <... < z'}[
be the elements of J which appear in 1. Then, for each j = 1,...,1; define 0%1_ to be the number of

J
times the index zi appears in 1. For ¢ € J not appearing among the z§ put af = 0. Then define
A(I) = al = (O‘Dz‘ej :

So we obtain a map A : 3* — NU). For given I # O one has by definition I = I; and 21 =
i{,...,if‘l = z} where [ = [,1 = l;. Moreover, the index i = ZJO‘I j =1,...,1 appears in /-;( )
exactly o] times which coincides with the number i appears in I. Hence £(A(I)) = I. Now assume
a € N\{0s} to be given and let I = k(). Then lf =1, and i} = i§, ... il =i for | = I; = l,.
For each of the indices i = i, j = 1,...,, the i-th component of A(%(a)) coincides with a;. Hence

ME(a)) = a, which flnlshes the proof that 7 is a bijection with inverse \.

By construction of k one has |k(a)| = |a for all Greek multi-indices o which entails that for every
k € N the bijection x maps N,(f) onto Jk.

Also by construction it is clear that x(a + 3) = r(a) + x(8) for all a, 8 € NU) and that x(05) = O.
Hence & is a morphism of monoids.

Now we will prove the formula for the cardinality of N7 by double induction on k and the cardinality
of the index set J. Obviously |NJ| = 1, so the claim holds for & = 0 and all finite index sets. Assume
that it holds for some natural & and all finite index sets. Now let J be an index set of cardinality 1.
Then |Nj, ;| = 1 since there is only one natural number with absolute value k + 1. Next assume
that the claim holds for k + 1 and all index sets of cardinality less than d. Let J be an index set of
cardinality d. Order the elements of J in some way so that J = {i1,...,i4} and i; < ... < ig4. The

set Niﬂ is then the disjoint union of the set of all o € Niﬂ such that a;, = 0 and the set of all
o € Nj,; such that a;, > 1. The first of these sets has cardinality

k
ld—1}|

NG

bl —1+l

the second has cardinality

INi| = (d+l)

l
!

iy

(IGN (8 = 1 —>N e > ((1 8% « 1) EN
k+1 td = k 11 ’ 1d—1" 1d k

is a bijection. Hence

o
T
A

IN)_4| = d—1+1) (d+1) =

0

i\H

:0

~
Il

k

1 1 P
:m(d—1+k+1)l (d+1) = (k+1)!g(d+l)

|
—

Il
o

and the induction step is finished. The claim is proved. O
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8.1.7 By a block of a Roman multi-index I of positive order we mean a Roman multi-index of the
form
Ip = (ibla"wib‘B‘) ,

where B is a subset of {1,...k} and the b1,...,bp € {1,...,k} are the elements of B in increasing
order. One can now decompose a multi-index I into blocks as follows. Let {By,..., B;} be a partition
of {1,...,k} which we assume to be lexicographically ordered that means that by; < bo; < ... < b,1,
where B; = {bj1,... ,bj‘Bj|} and bj,, < bj, for j =1,...,7and 1 <m < n < |Bj|. To express that
{Bi,...,B;} is a lexicographically ordered partition of {1,...,k} by r non-empty sets we write

Bll_l...I_IBTZ{l,...,]{} & @<Bl<...<Br.

Now put I :=1Ip, for j =1,...,r. Then the Roman multi-indices I and I; + ... + I, are equivalent
which can be interpreted as I being decomposed into the r blocks Iy,...,I.. More precisely, we
call the r-tupel of pairs ((Il,Bl), e (IT,BT)) a decomposition of 1 into r blocks and denote the

space of such decompositions by Block”(I). Note that the cardinality of Block”(I) coincides with the
Sterling number of the second kind {}} which gives the number of ways the set {1,...,k} can be
partitioned into 7 subsets.

Multipowers and multiderivatives

8.1.8 Let M be a manifold and z = (z!,...,2%) : U — R? a local coordinate system. Let
Ie{l,...,d}* be a Roman multi-index of positive order k. Then the product

ali=gh . g (A.8.1.1)
and, for every f € C*(U), the higher derivative

oy orf

ozl oxit - ... Oxk

(A8.1.2)

are both invariant under permutations of the components of I, hence depend only on the equivalence
ol

5, In order 0 one puts 20 =20 :=1

- . N it
class I. We therefore sometimes write z! for 2! and ‘;—Tf for
T

ol o] .. .
and ‘;—g =2 of := f. For a multi-index o € N¢ one defines as usual
X

ox

and

a|a\f _ a\a|f '_ 0 ai 0 aq
oz " (oxh)er .- (0xd)ed <ax1> <8:Ud> U

If now v and T are related by I = x(), then

I . ol B olel £

Tr = an - =
6x1 6:1:0‘

by definition of x and invariance of the product respectively the higher derivative under permutations
of components of the multi-index.
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8.1.9 Remark Occasionally we need multipowers and multiderivatives over more general index sets.
So let J be an arbitrary but still finite index set. Assume that the components of a coordinate system
x: U — R are labelled * where i runs through the elements of J. For I € J* equations (A.8.1.1]) and

(AZ81:2) then can be used again to define multipowers 2! and multiderivatives & If Note that both
objects are invariant under permutations of components of I, too, so the corresponding expressions
where I is replaced by I are also well-defined. Now let o = (;);e5 € N’ be a Greek multi-index and

feC®U). One then defines
%= H(mz)o‘i

olely o \*"
oz _g<0x’> /-

One finally checks that when %(a) = I the equalities #* = 2! and aal;laf = a{;% still hold true in this

and

more general situation.

The formula of Faa-di-Bruno

8.1.10 Theorem (Combinatorial form of Faa-di-Bruno’s formula) LetZ and J denote finite
index sets. Assume that M and N are smooth manifolds and that we are given smooth charts
z:U < R andy : V < R7 over open domains U « M and V. < N. Assume further that
¢ : U — V is a smooth map. Denote by p; : U — R for j € J its components that means
that ¢ = (¢7)je7. Finally let 1 € T be a Roman multi-index of positive order k. Then for every
f e CP(V) the following equality holds true:

oM(r ol o1l i olsr | pir
83:1 Z Z Z , <6yJ op | - PR (A.8.1.3)

JeJg" Biu...uBr={1,...,
J=(0j1,--dr) F<B1<...<Bp

Proof. We prove the claim by induction on the length of the multi-index I. Assume to be given a
Roman multi-index I € ZF of length k = |I| = 1. Then there exists a unique i € Z such that I = (i).
By the chain rule one computes

M(fop) _afoyp) _ of ol a“‘f oMzl
ozt ox ]Z (0yﬂ ) A YD Codtm

Jegl By={1}
J=(41)

hence the claim holds true for k = 1.

Now assume that for some k > 1 the claim holds for all Roman multi-indices of order < k over T.
Assume that T = (i1,...,49k+1) is a Roman multi-index of order k + 1 over Z. Then I = K + i1,
where K = (i1,...,4x) is a Roman multi-index of order k. Using the induction hypothesis for K, the
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product and the chain rule one obtains

M(fop) o X

oxl Oz (?fo 7=
k ,
SZ =Y AR
- Tha1 KB “e KB =
o' r=1 JeJT  Bju.. uBT .., du™P O™ Br
J=(1s--0r) F<Bp<.. <Br
0o & aIJIf oleyl it oa, | pir
T Dxikr Z Z By P v el
oz r=1 JeJT  Bju.. uBT {,.., Gt O Br
J=(1 5000 jr) F<Bi<.. <B,n
Zk: Z a‘J‘Jrlf 6‘IBl‘<,0jl ﬁ‘IBT'l(pjT ﬁtpjr‘*'l
= . o I
Tir1 ¥ Ip Iz, it1
r=1  JeJ"  jrp1€J Biu..uBr={l,., dyHr+ Oz B1 oxlBr  Oxtk+
J=(G1,-++r) @<B1<M<BT

k I8 a|J|f 6‘131‘80]1 6‘137‘¢JT

IS >, Clop) O e e

r=11=1 JeJ" Byu..uBr={1,..k} oy’ ox'B1 OBk ox'Br
J=(j1,--.Jr) @F<B1<...<Br

:%1 > > 2y op ol ...,.75‘137"¢jr+
k+1} oy’ ox'en Ox'er

r=2 Jeg” Bju...uBr={1,...,
J=(J1,-e» Jr) @<Bi<..<Bp={k+1}
k a“”f a'IBllgpjl a‘IBr‘SDJT
D D N e B
J Ip I
r=1  JeJ"  Bjiu..uBp={1,..,k+1} 0y oz b1 oz Br
J=(J1 500! jr) @<Bi<..<Br#{k+1}
phs ¥ 5 ol g oIty | i FILER
= —op | —— .
J s I,
r=1  JeJT  Biu..uBr={1,..k+1} oy dz' 5 ox
J=(415---7) @<Bi<...<Bp
This concludes the induction step and the theorem is proved. O

A.8.2. Jet bundles

8.2.1 Let us fix in this section a smooth finite dimensional fiber bundle 7” : E — M. Denote by F'
its typical fiber and put d = dim M, n = dim F. The dimension of the total space E then is given
by dim E = d + n. Note that for each point p € M the fiber F, = (7¥)~1(p) is diffeomorphic to
F.

Recall that I'° (%) stands for the sheaf of smooth local sections of 7% Its space of sections over an
open U = M consists of all smooth s : U — E such that 7% o s = idy; and is denoted by T'®(U, ©%).
When writing s € T®(7¥) we mean that s is a smooth local section of E defined over some open
subset U = doms — M. If p e X is a point, then IT®(p, 7¥) denotes the space of local smooth
sections about p that is the space of all smooth sections s : U — E defined on an open neighborhood
U < X of p. We will write U for the filter basis of all open neighborhoods of p and F;O(WE) for the
stalk of T (7¥) at p which is defined as the colimit

F;O(TFE) = Cerl%lIglFOO(U, ™) =T%(p, %)/ ~, . (A.8.2.1)

P
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Here we have made use of the fact that the colimit can be represented as the quotient of I'®(p, )
by the equivalence relation ~,,, where equivalence s; ~; s of two smooth sections s : Uy — E
and sy : Uy — E over open neighborhoods of p is defined by the existance of an open neighborhood
U < Uy n Uy of p such that s1|y := sa|y. The equivalence class of a section s € I'®(p, %) is
denoted [s], and is called the germ of s at p. So in other words, I’go(wE) is the space of all germs
of smooth sections at p. To distinguish ~,, from the later defined m-equivalence we call the relation
~p germ equivalence at p.

8.2.2 Definition Let p € M be a point in the base manifold M and k € N U {oo}. Two local
smooth sections s1 : Uy — E and s : Uy — E defined over open neighborhoods of p are said to be
k-equivalent at p if s1(p) = sa(p) and if for every fibered chart (z,u) : W — R% x R" of 7% such
that p € m(W), every index b € {1,...,n} and all & € N% with |a| < k the equality
dled(ub o sy) ool (ub o sy)
T(P) = T(P

(A8.2.2)

holds true.

8.2.3 Proposition and Definition Let p € M be a point and k € N U {o0}. Then k-equivalence at
p is an equivalence relation on T°(p,w¥). It will be denoted by the symbol ~y. ,,. The k-equivalence
class of a smooth section s : U — E at p will be written j’;(s). It is called the k-jet of s at p. The
set of such k-jets at p coincides with the quotient space J’;(WE) =T(p,7F)/ ~p. The union
F(E) = I EP) = ] (="
peM

will be called the space of k-jets of sections of the bundle =¥ : E — M. Finally, there is a projection
k= (), JE(x®) — M which maps a jet j’;(s), s e I'(p, ) to its footpoint p.

Proof. The relation of k-equivalence at p is obviously reflexive and symmetric by definition. It is also
transitive by transitivity of equality. Hence k-equivalence at p is an equivalence relation indeed. The
claim is proved. O

8.2.4 Lemma The following statements are equivalent for two sections s1, so € I'°(p, m¥) such that
s1(p) = s2(p)-

(1) The local sections s; and so are k-equivalent at p.

(2) If (z,u) : W — R4 xR is a fibered chart of ¥ such that p € w(W), then for allbe {1,...,n}
andTe {1,...,d}! with1 <1 <k:
AM(ub o 31)( - M (uP o s5)

p D p (p) . (A.8.2.3)

(3) There exists a fibered chart (z,u) : W — R% x R of 7% with p € m(W) such that (A.8.2.2)

holds true.

(4) There exists a fibered chart (z,u) : W — R% x R™ of 7% with p € ©(W) such that (A.8.2.3)
holds true.

Proof. The claim is an immediate consequence of the formula of Faa-di-Bruno. O

8.2.5 Next we want to define a topology on the jet space J¥(7%) so that 7* : J¥(7¥) — M becomes
a (topological) fiber bundle.
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A.9. Geometric PDEs

A.9.1. Linear differential operators over commutative rings

9.1.1 In this section, A will always denote a commutative unital algebra over a field of characteristic
zero k. The identity element of A will be denoted by 1. Let M, N be two A-modules. An element
a € A then acts in two natural ways on the space Homy (M, N) of k-linear maps from M to N,
namely by

ax : Homy (M, N) — Homy (M, N), f — a.f = af = (M 5m— af(m) € N) (A9.1.1)
and
a* : Homy(M,N) — Homy (M, N), f— a*f = fa= (M 3m+— f(am)e N) . (A.9.1.2)

9.1.2 Proposition and Definition The actions a, and a* define two A-module structures on Homy (M, N)
which are called the canonical left and the canonical right A-module structures, respectively. These
module structures commute.

Proof. In the following let a,b € A and f, g € Homy (M, N). Then one computes for m € M

((a+0)sf)(m) = (a+0b)(f(m)) =a(f(m)) +b(f(m))
= (Cb*f)(m) + (b*f)(m) = (a*f + b*f)(m) )

(ax(f + 9)) (m) = a(f(m) + g(m)) = af(m) + ag(m) = (asf + axg) (m) ,
(axbsf)(m) = a(bf(m)) = (ab)(f(m)) = ((ab)+f)(m) ,
(Lef)(m) =1+ f(m) = f(m)

and

((@+0)*f)(m) = f((a+b)m) = flam) + f(bm)
= (a*f)(m) + (b*f)(m) = (a*f + b*f)(m)

(a*(f +9))(m) = f(am) + g(am) = a* f(m) + a*g(m) = (a*f + a*g)(m) ,
(a*b*f)(m) = (b*f)(am) = f((b(am))) = f((ab)m) = ((ab)*f)(m) ,
(1*F)(m) = F(1-m) = F(m) .

This proves the module properties. It remains to show that a.b* f = b*a, f. But that is clear since
forallme M

(a*b*f)(m) = a((b*f)(m)) = a(f(bm)) = (a*f)(bm) = (b*a*f)(m) . 0
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9.1.3 Remark By the preceding proposition Homy (M, N) becomes an A-bimodule which is not
symmetric, in general, unless for example M = N = A. We regard Homy (M, N) always as an object
in the category of A-bimodules. When we want to consider only the canonical left or the canonical
right A-module structure on the space of k-linear maps from M to N we write 4Homy (M, N) and
Homy 4 (M, N), respectively, for the resulting objects in the category of A-modules.

9.1.4 Definition For every a € A denote by ad, : Homy (M, N) — Homg (M, N) the k-linear map
ax — a* and call it the adjoint action of a.

9.1.5 Lemma Let M, N, P be A-modules. Then one has for all f € Homy (M, N), g € Homg (N, P)
and all a,be A

adgp f = ax(ady f) + 0™ (ady f) = a*(ady f) + be(ad, f) , (A.9.1.3)
ade(go f) = (adgg)o f+go(ads f) . (A.9.1.4)

Proof. Compute by observing that the left and right A-module structures commute:
adap f = (ab)xf — (ab)*f = ax (b f — b*f) + ™ (axf — a™ f) = ax(ady f) + b*(ada f) -

By symmetry in a and b the first claimed equality follows. For the second observe that (a*g) o f =
g o (axf) and compute

ada(go f) = ax(go f) —a*(go f) = (axg —a*g)o f+go(axf —a’f) =
= (adag)of+go(adaf) :
9.1.6 Definition For all A-modules M, N the space Diff®(M, N) of linear differential operators of
order 0 from M to N is defined as the set of D € Homy (M, N) such that

ad, D=0 forallae A.

Recursively, one defines the space Diﬁk(M, N) of linear differential operators of order < k + 1 from
M to N as the set of all D € Homy (M, N) such that

ad, D € Dz’ﬁk(M,N) forallae A .

The space Derg(A, N) of derivations in N is defined as the set of all D € Homg (A, N) for which
the Leibniz rule holds that is for which

D(ab) = aD(b) + bD(a) foralla,be A .

9.1.7 Remark By definition, Diff°(M, N) coincides with the space Hom 4(M, N) of A-module maps
from M to N. By induction on k it becomes clear that Diff*(M, N) can be equivalently described
as the set of all D € Homy (M, N) such that

adg,0...0ad,, ) D =0 forallag,...,ap€ A .
(adaq, "

9.1.8 Proposition Let M, N, P be two A-modules. Then the following holds true for all k,l € N.

160



A.9. Geometric PDEs A.9.1. Linear differential operators over commutative rings

(i) The space Diff®(M,N) inherits from Homy (M, N) both A-module structures so is an A-
subbimodule of Homy (M, N). The two A-module structures coincide on Diff®(M, N) but
in general not on spaces of differential operators of higher order.

(i) One has a canonical inclusion

Diff* (M, N) < Diff**1(M,N) .

(iii) The composition of a differential operator A € Diff*(N, P) with a differential operator D €
Diff (M, N) is a linear differential operator of degree < k + 1.

(iv) The space of derivations Dery (A, N) is an A-submodule of Diff'(M, N) with respect to the
canonical left A-module structure but in general not an A-submodule of Diff'(M,N) with
respect to the canonical right A-module structure.

Proof. ad (i). The claim for Diff (M, N) holds since for every D € Diff®(M, N) and a € A the
operators a,D and a*D coincide and are both A-linear again by the following equalities.

(a*D)(m) = D(am) = D(am) = a(D(m)) = (axD)(m) for all m e M and
(axD)(bm) = a(D(bm)) = ab(D(m)) = b(aD(m)) = b(axD(m)) forallbe A, me M .

Under the assumption that Diff*(M, N) inherits the A-bimodule structure from Homy (M, N) one
checks for D € Diff*+1(M, N)

ady(asxD) = byasD — b*ayD = a4 (b D — b* D) = ay(ady D) € Diff *(M,N) and
ady(a*D) = bya*D — b*a*D = a* (b« D — b* D) = a*(ady D) € Diff*(M, N) .
By induction Diff* (M, N) therefore is an A-subbimodule of Homy (M, N) for all k € N. Even though

the two A-module structures coincide on Diff®(M, N) they do not on spaces of differential operators
of order 1 (and higher) as Example below shows.

ad (ii). This is obvious by definition and an inductive argument.

ad (iii). If k+1 = 0 the claim is clear since then both A and D are A-linear, hence their composition
is so, too. Assume that for some natural n the claim holds for all k,1 € N with £+ < n. Then assume
k+1=n+1andlet A € Diff*(N, P) and D € Diff'(M, N). Now compute using Equation (A.9.1.4)

adqe(Ao D) = (adgA)o D+ Ao (ad, D) .

By inductive hypothesis the right hand side is a differential operator of order < n, hence Ao D €
Diff (M, P).

ad (iv). The space of derivations Dery (A, N) is an A-submodule of Diff' (M, N) with respect to
the canonical left A-module structure. Namely, if D € Derg(A, N) and a,b,c € A, then

(axD)(bc) = aD(bc) = abD(c) + acD(b) = b(aD(c)) + ¢(aD(b)) = b(asxD)(c) + c(axD)(d) .

In general, Dery(A, N) is not an A-submodule of Diff*(M, N) with respect to the canonical right
A-module structure. O
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9.1.9 Example Let A = k[X},...,X,] be the polynomial ring over k in n indeterminates and Qi‘/k
the space of Kahler differentials of A that is the space I/I?, where I is the kernel of the multiplication
map p: AQx A — A. The canonical map d: A — Qi‘/k, a—da=1Ra—a®1+ I?thenisa
derivation and Q,lax/k an A-module which is free over the elements dX;,...,dX,. If now a € A\,
then

a*d(1l) =da # 0,

so a*d can not be a derivation. Note that a.d is a derivation by Proposition [9.1.8][(iv)]

9.1.10 By Proposition one has a (filtered) diagram in the category of A-bimodules
Diff* (M, N) — Diff (M, N) — ... — Diff*(M,N) — . (A.9.1.5)

Its colimit exists and coincides with the union of the Diff*(M, N), k € N. We will denote it by
Diff (M, N) and call it the A-bimodules of linear differential operators from M to N.

9.1.11 Remark In case we want to consider the spaces Diff*(M, N) and Diff (M, N) with their
canonical left A-module structure, only, we write 4 Diff*(M, N) and ADiff (M, N), respectively.
Analogously, when we regard Diff* (M, N) and Diff (M, N) as objects in the category of A-modules
with their canonical right A-module structure we denote them by Diff¥ (M, N) and Diff ,(M, N),
respectively. By Diff (M)

9.1.12 Proposition Assigning to every pair of A-modules (M, N) the A-bimodule Diff*(M,N)
and to every pair of A-module maps f : M’ — M and g : N — N’ the A-bimodule map (f*, g«) :
Diff*(M,N) — Diff*(M',N'), D — go D o f comprises a bifunctor which is contravariant in the
first and covariant in the second argument. Analogously, the assignment (M, N) — Diff (M, N)
becomes a bifunctor.

Proof. By definition, ((idas)*, (idn)«)D = D for every D € Diff*(M, N), so

((ida)*, (idn)«) = idpgk v,y -

Let My, My, M3, N1, Ny, N3 denote A-modules and assume to be given A-modules maps f1 : My —
Ml, f2 . M3 — MQ, gl N1 i NQ, and [ N2 — Ng. Then

((f;»g2*) o (fl*vgl*)>D = (f;,gg*) (g1 oDofl) =(gaogq1)oDo(fiofa) =
= ((fl sz)*a (92 091)*)D .

This proves that Diff*(—, —) and Diff (—, —) are bifunctors contravariant in the first and covariant
in the second argument. O

9.1.13 Theorem Let N be an A-module. Then the functors @ijj"k(—,N) : 4AMod — 4Mod 4 and
Diff (—,N) : sAMod — 4Mody are representable. Representing objects are given by the A-modules
ADiffE(N) and ADiff (N), respectively.

il
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Theorem.Let U < R™ open and D(U) < C*(U) the space of test functions over U that is
the space of all real valued smooth functions with support compact in U. Denote by X(U)
the set of all compact subset K < U and for all K € X(U) by D (U) the space of real valued
smooth functions with support in K. Endow Dy (U) with its natural structure of a Fréchet
space. Finally, let (Kj)ren be a compact exhaustion of U which means that each K} has
non-empty open interior, | i K = U and K, € IO(kH for all k € N. Then the following
locally convex structures on D(U) coincide:

(i) the standard LF-space structure given by the locally convex colimit topology of the count-

able strict inductive system (D, (U)) el

(ii) the locally convex colimit topology of the inductive system (DK(U))Kex(U)'

(iii) the locally convex structure induced by the collection of all seminorms q : D(U) — Rxq
such that q o 1 : D (U) — R is a continuous seminorm, where 1 : D (U) — D(U)
is the canoncial embedding,

(iv) the locally convex structure induced by the collection of all seminormspyn g : D(U) — Rxq
of the form
%2,

pno(f) = sup for f e D(U) ,

aeN?, |a\sN

where N runs through the elements of N, 0 through all locally finite families (04)aenn of
continuous functions 6, : U — R, and where | — || denotes the supremum norm over
U.
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an “as-is” basis. Creative Commons gives no warranties regarding its licenses, any material licensed
under their terms and conditions, or any related information. Creative Commons disclaims all liability
for damages resulting from their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and
other rights holders may use to share original works of authorship and other material subject to
copyright and certain other rights specified in the public license below. The following considerations
are for informational purposes only, are not exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are
intended for use by those authorized to give the public
permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are
irrevocable. Licensors should read and understand the terms
and conditions of the license they choose before applying it.
Licensors should also secure all rights necessary before
applying our licenses so that the public can reuse the
material as expected. Licensors should clearly mark any
material not subject to the license. This includes other CC-
licensed material, or material used under an exception or
limitation to copyright. More considerations for licensors:
wiki.creativecommons.org/Considerations_for_licensors

Considerations for the public: By using one of our public
licenses, a licensor grants the public permission to use the
licensed material under specified terms and conditions. If
the licensor’s permission is not necessary for any reason--for
example, because of any applicable exception or limitation to
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copyright--then that use is not regulated by the license. Our
licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of
the licensed material may still be restricted for other
reasons, including because others have copyright or other
rights in the material. A licensor may make special requests,
such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to
respect those requests where reasonable. More_considerations
for the public:
wiki.creativecommons.org/Considerations_for_licensees

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Public License (“Public License”). To the extent this Public License may be interpreted as a contract,
You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions,
and the Licensor grants You such rights in consideration of benefits the Licensor receives from making
the Licensed Material available under these terms and conditions.

Section 1 — Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from
or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copy-
right and Similar Rights held by the Licensor. For purposes of this Public License, where the
Licensed Material is a musical work, performance, or sound recording, Adapted Material is
always produced where the Licensed Material is synched in timed relation with a moving image.

b. Copyright and Similar Rights means copyright and/or similar rights closely related to copy-
right including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of
this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar
Rights.

c. Effective Technological Measures means those measures that, in the absence of proper author-
ity, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

d. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation
to Copyright and Similar Rights that applies to Your use of the Licensed Material.

e. Licensed Material means the artistic or literary work, database, or other material to which the
Licensor applied this Public License.
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f. Licensed Rights means the rights granted to You subject to the terms and conditions of this
Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

g. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

h. NonCommercial means not primarily intended for or directed towards commercial advantage
or monetary compensation. For purposes of this Public License, the exchange of the Licensed
Material for other material subject to Copyright and Similar Rights by digital file-sharing or
similar means is NonCommercial provided there is no payment of monetary compensation in
connection with the exchange.

i. Share means to provide material to the public by any means or process that requires permission
under the Licensed Rights, such as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material available to the public
including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j- Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC
of the European Parliament and of the Council of 11 March 1996 on the legal protection of
databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 — Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You
a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise
the Licensed Rights in the Licensed Material to:

a. reproduce and Share the Licensed Material, in whole or
in part, for NonCommercial purposes only; and

b. produce and reproduce, but not Share, Adapted Material
for NonCommercial purposes only.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply
with its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to
exercise the Licensed Rights in all media and formats whether now known or hereafter
created, and to make technical modifications necessary to do so. The Licensor waives
and/or agrees not to assert any right or authority to forbid You from making technical
modifications necessary to exercise the Licensed Rights, including technical modifications
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necessary to circumvent Effective Technological Measures. For purposes of this Public
License, simply making modifications authorized by this Section 2(a)

(4) never produces Adapted Material.

. Downstream recipients.

a. Offer from the Licensor -- Licensed Material. Every
recipient of the Licensed Material automatically
receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this
Public License.

b. No downstream restrictions. You may not offer or impose
any additional or different terms or conditions on, or
apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed
Material.

. No endorsement. Nothing in this Public License constitutes or may be construed as

permission to assert or imply that You are, or that Your use of the Licensed Material is,
connected with, or sponsored, endorsed, or granted official status by, the Licensor or others
designated to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License,

nor are publicity, privacy, and/or other similar personality rights; however, to the extent
possible, the Licensor waives and/or agrees not to assert any such rights held by the
Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but
not otherwise.

. Patent and trademark rights are not licensed under this Public License.

. To the extent possible, the Licensor waives any right to collect royalties from You for the

exercise of the Licensed Rights, whether directly or through a collecting society under any
voluntary or waivable statutory or compulsory licensing scheme. In all other cases the
Licensor expressly reserves any right to collect such royalties, including when the Licensed
Material is used other than for NonCommercial purposes.

Section 3 — License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

If You Share the Licensed Material, You must:
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a. retain the following if it is supplied by the Licensor
with the Licensed Material:

ii.

iii.

iv.

identification of the creator(s) of the Licensed
Material and any others designated to receive
attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if
designated) ;

a copyright notice;
a notice that refers to this Public License;

a notice that refers to the disclaimer of
warranties;

. a URI or hyperlink to the Licensed Material to the

extent reasonably practicable;

b. indicate if You modified the Licensed Material and
retain an indication of any previous modifications; and

c. indicate the Licensed Material is licensed under this
Public License, and include the text of, or the URI or
hyperlink to, this Public License.

For the avoidance of doubt, You do not have permission under this Public License to Share
Adapted Material.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it
may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource
that includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

Section 4 — Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed

Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database for NonCommercial
purposes only and provided You do not Share Adapted Material;

b. if You include all or a substantial portion of the database contents in a database in which You
have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and
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c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under
this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 — Disclaimer of Warranties and Limitation of Liability.

a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE EX-
TENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS AND AS-
AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS, IMPLIED, STATUTORY,
OR OTHER. THIS INCLUDES, WITHOUT LIMITATION, WARRANTIES OF TITLE, MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, AB-
SENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OR AB-
SENCE OF ERRORS, WHETHER OR NOT KNOWN OR DISCOVERABLE. WHERE DIS-
CLAIMERS OF WARRANTIES ARE NOT ALLOWED IN FULL OR IN PART, THIS DIS-
CLAIMER MAY NOT APPLY TO YOU.

b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE TO YOU
ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION, NEGLIGENCE) OR OTH-
ERWISE FOR ANY DIRECT, SPECIAL, INDIRECT, INCIDENTAL, CONSEQUENTIAL, PUNI-
TIVE, EXEMPLARY, OR OTHER LOSSES, COSTS, EXPENSES, OR DAMAGES ARISING
OUT OF THIS PUBLIC LICENSE OR USE OF THE LICENSED MATERIAL, EVEN IF THE
LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EX-
PENSES, OR DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN
FULL OR IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and
waiver of all liability.

Section 6 — Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public
License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of
Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have
to seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so
will not terminate this Public License.
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d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
Section 7 — Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communicated
by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 — Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce,
limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be
made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the
provision cannot be reformed, it shall be severed from this Public License without affecting the
enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver
of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect
to apply one of its public licenses to material it publishes and in those instances will be considered the
“Licensor.” The text of the Creative Commons public licenses is dedicated to the public domain under
the CCO Public Domain Dedication. Except for the limited purpose of indicating that material is
shared under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the use of
the trademark “Creative Commons” or any other trademark or logo of Creative Commons without its
prior written consent including, without limitation, in connection with any unauthorized modifications
to any of its public licenses or any other arrangements, understandings, or agreements concerning
use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public
licenses.

Creative Commons may be contacted at creativecommons.org.

174



Licenses GNU FDL v1.3

GNU Free Documentation License Version 1.3

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document'’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If
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a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts' are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCIl without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

The “publisher’” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “En-
dorsements”, or “History".) To “Preserve the Title" of such a section when you modify the Document
means that it remains a section “Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control the reading or further
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copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access
to download using public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version
of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission. B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than five), unless
they release you from this requirement. C. State on the Title page the name of the publisher of
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the Modified Version, as the publisher. D. Preserve all the copyright notices of the Document. E.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the Addendum
below. G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice. H. Include an unaltered copy of this License. |. Preserve
the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence. J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission. K. For any section Entitled
“Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section
all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles. M. Delete any
section Entitled “Endorsements”. Such a section may not be included in the Modified Version. N. Do
not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant
Section. O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
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Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it,
in parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original docu-
ments, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorse-
ments”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation's users beyond
what the individual works permit. When the Document is included in an aggregate, this License
does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that
you also include the original English version of this License and the original versions of those notices
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and disclaimers. In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will
automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify
a version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation. If the Document specifies that a proxy can decide which future versions
of this License can be used, that proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site") means any World Wide Web server that
publishes copyrightable works and also provides prominent facilities for anybody to edit those works.
A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collabo-
ration” (or "MMC") contained in the site means any set of copyrightable works thus published on the
MMC site.
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“CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative
Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license published by that same organization.

“Incorporate”’ means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated
in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. .. Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these ex-
amples in parallel under your choice of free software license, such as the GNU General Public License,
to permit their use in free software.
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